

Глубинное строение района Хибинского и Ловозерского массивов (Кольский полуостров) на основе миграции данных Ps и Sp функций приемника

Аннотация

В работе представлены новые результаты исследования глубинного строения земной коры и верхней мантии в районе Хибинской и Ловозерской щелочных интрузий. Методом функций приемника, с применением миграции, впервые получены двумерные модели среды под изучаемыми структурами. Определена сложная топография коро-мантийного перехода. Выявленные эффекты интерпретированы как следы палеозойского плюмового события.

Введение

Изучение глубинной структуры земной коры сейсмическими методами является актуальной задачей прежде всего по причине сосредоточения в ней извлекаемых природных ресурсов. Центральная часть Кольского региона славится своей уникальной геологией и минералогией, а также богатством рудопроявлений. При этом территория изучена неравномерно, особенно в части глубинного строения. Настоящий доклад посвящен использованию метода функции приемника для определения структуры земной коры и верхней мантии в районе Хибинского и Ловозерского щелочных массивов. Одними из первых работ, где были даны теоретические обоснования метода, являются [Langston, Burdick, 1977; Vinnik, 1977]. Далее методика приобрела широкое распространение и успешно применялась для решения задач восстановления глубинного строения в различных тектонических обстановках [Винник и др., 2017; Kind et al., 1995; Kind et al., 2017]. Цель данной работы – применение миграции как к волнам Ps, так и Sp, для получения двумерного глубинного разреза через изучаемые структуры.

Обрабатываемые данные получены двумя широкополосными сейсмическими станциями, расположенными вблизи от Хибинского и Ловозерского массивов. Схема станций вместе с профилем, по которому определялось глубинное строение, изображена на рис.1.

Рис 1. Расположение сейсмических станций на карте Google Earth. Белой линией показан профиль, по которому определялось глубинное строение

Метод функции приемника

- □ Использует обменные волны от контрастных сейсмических границ (рис.2, 3)
- Подразделяется на два направления по типам обменных волн (PRF и SRF)
- Позволяет смоделировать локальную скоростную структуру вблизи станции
- Позволяет произвести оценки аномалий границ зоны фазовых переходов
- □ Две школы: первая использует для восстановления глубинных скоростных разрезов инверсию (Винник, Косарев, 1981), вторая – миграцию (Ammon et al., 1990)

- времени
- о Определение теоретических азимута и эпицентрального расстояния. Отбраковка землетрясений с расстоянием < 30 и > 90 градусов
- по ak135

- о Определение отношения S/N на Q-компоненте функции приемника и отбраковка функций приемника с отношением S/N меньше заданного
- Миграция функций приемника (алгоритм обратного пробега по лучу): суммирование по точкам обмена как Ps-, так и Sp-фаз
- о Трансформация из временного представления в глубинный

глубиной. фоне коды волн Р. НИМ.

Кухмазов А.С.*, Гоев А.Г. ИДГ РАН

Кухмазов А.С.*, Гоев А.Г.

Институт динамики геосфер Российской Академии Наук им. академика М.А. Садовского (ИДГ РАН)

Граф обработки

• Выбор землетрясений из каталога IRIS с магнитудой >= 5 за значительный период

- Создание скоростной модели земной коры и верхней мантии по данным профиля ГСЗ «Кварц» и глобальной модели ak135
- Расчет теоретического времени пробега, времени первого вступления и медленности
- Частотная полосовая фильтрация записей
- о Вращение записей из системы ZNE в систему LQT
- о Применение итеративной деконволюции (Q/L для PRF, L/Q для SRF)

Результаты и обсуждение

Глубинные сейсмические разрезы после миграции по обработке обменных Ps- и Sp-волн представлены на рисунке 4. Характер расположения границ обмена волн Ps, показанный в виде увеличения амплитуд положительных фаз Ps, свидетельствует об увеличении скорости S-волн на соответствующих глубинах (рисунок 4a), где происходит обмен первичной волны Р на волну SV. Аналогичным образом интерпретируются и результаты, представленные на рисунке 46, за исключением того, что речь идет о первичных волнах S, которые обмениваются на волну P на участках резкого увеличения скорости P-волн с

Можно отметить схожесть характера распределения сейсмических границ на обоих рисунках, а также более отчетливое определение обменных границ для волн Ps (рисунок 4а) по сравнению с волнами Sp (рисунок 4б), вызванную, вероятно, большим отношением сигнал/шум для вступлений Р-волн по сравнению с вступлениями S-волн на

На полученных разрезах отчетливо проявляется сложная топография залегания сейсмических границ. В частности, прослеживается куполообразное поднятие границы Мохо и обменных границ непосредственно под коро-мантийным переходом, возможно, связанные с генезисом самих плутонов. По комплексу геолого-геохимических данных формирование плутонов относится к палеозойскому плюмовому событию [Chashchin, Mitrofanov, 2014], и обнаруженные аномалии могут быть связаны именно с

E-mail: A-Kukhmazov@mail.ru Телефон: +7(926)8758418

Рис 4. Результат миграции функций приемника PRF (а) и SRF (б) методом обратного пробега по лучу по профилю, простирающемуся вдоль горного массива Хибин. Справа от рисунков – шкала амплитуд: меняется от отрицательных фаз (синий цвет) до положительных (красный цвет). Сверху от разрезов черными трапециями показано местоположение сейсмических станций, принимавших участие в обработке: Апатиты (левая трапеция черного цвета) и Ловозеро (правая трапеция черного цвета)

- между двумя станциями.

- 1095.
- 2017. T. 8, № 4. C. 695-709
- Tectonophysics, 2014. Vol. 5. № 1. P. 231–256.
- 2017. 700, 19-31.
- America, 1977. 67 (3): 677–691

Заключение

Проведена обработка методом функции приемника как PRF, так и SRF; Получен первый мигрированный разрез, секущий Хибинскую и Ловозерскую интрузии (рис. 4а – PRF; рис. 4б – SRF);

Маркировано положение подошвы интрузий и показан их сложный рельеф, <u>не</u> противоречащий и уточняющий известные геолого-геофизические данные Маркирована граница Мохо для региона, показан возможный разрыв границы Мохо

Список литературы

Винник Л.П., Косарев Г.Л. Определение параметров коры по наблюдениям телесейсмических объемных волн. Докл. АН СССР, 1981. Т. 261, - №5. - С. 1091-

Винник Л.П., Орешин С.И., Цыдыпова Л.Р., Мордвинова В.В., Кобелев М.М., Хритова М.А., Тубанов Ц.А. Кора и мантия Байкальской рифтовой зоны по данным приемных функций продольных и поперечных волн. Геодинамика и тектонофизика,

Ammon C.J., Randall G. E. and Zandt G. On the non-uniqueness of receiver function inversions. J. Geophys, 1990. Res., 95, 15303-15318.

Chashchin V.V., Mitrofanov F.P. The Paleoproterozoic Imandra-Varzuga rifting structure (Kola Peninsula): intrusive magmatism and minerageny. Geodynamics &

Kind R., Handy M.R., Yuan X., Meier T., Kämpf H., Soomro R: Detection of a new sublithospheric discontinuity in central Europe with S-receiver functions. Tectonophysics,

Kind R., Kosarev G.L. and Petersen N.V. Receiver function at the station of the German Regional Seismic Network (GRSN). Geophys. J. Int., 1995. Vol. 121. - P. 191-202 Langston C.A., Burdick, L.J. Modeling crustal structure through the use of converted phases in teleseismic body-wave forms. Bulletin of the Seismological Society of

Vinnik L.P. Detection of waves converted from P to SV in the mantle. Physics of the Earth and Planetary Interiors, 1977. 15 (1): 39–45