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Statistical mechanics of earthquakes

Conventional models can be classified as:
- Dynamic models describing the momentum transfer (stress, velocity) along the existing
faults)in the frame work of deterministic approach (J. Rice, B. Kostrov);
- Statistical models describing the probability of shear faults using the statistical data of
seismic events (J. Rundle, D. Turcotte et al.).

Physical model of earthquakes (J. Rundle et al., 1997)
* System of localized shears S(X, t)

* Statistical equilibrium in the presence of stress

o[ xts(x,t'),p] =0, [ x,t,s(x,1)],

whereo, (X, t) is the elastic stress acting at the site on a fault due to the background traction p;

is the frictional cohesive stress associated with the slip
O (x, t)

b

*Probability distribution function for shears ensemble

p(Eq):Tiexp[— Eq/st]
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where T, is the time average energy per blocks (effective temperature)
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Langevin equation for long-range modes

*Energy functional H(S) H = ;Zl{@ %KC Zj[s i TS ]2}

where K, and K. are parameters

Elastic stress as a function of “slip deficit”

o [s]=o,[t]= 0[5+ V1,

where V is group stress wave velocity.

Ito-Langevin equation

0s oU
L __r2E
5~ T T,

where U(X;T) is the O -correlated noise.
(nlx,ohn(x, 7)) =278 —7')5(x - x')

Solution of associated Fokker-Plank equation:

fls]=Z™" exp{- BU[s];




MICROSCOPIC VARIABLES FOR DEFECT ENSEMBLE

Localization of Symmetry Groups of Distortion Tensor (Gauge Field Theory)

Microcrack Microshear
S, =SV.V _1 [ 4]
ik—°Vi"k Sik= /> (Vi k ivk)
B .
v T v
Sp SD v B
Where  s=5,B is the microcrack volume (shear intensity)

B is the Burgers vector.



STATISTICS OF MESODEFECTS

Generalization of the Boltzmann-Gibbs statistics for the “out-equilibrium”
system (the Leontovich effective field method)

veres| E])

/ is the normalization constant.

Statistical properties of the defect ensemble can be described after the
determination of the defect energy E and the dispersion properties of the
system given by the value of Q.

Microcrack (Microshear) Energy:
— 2
E=E,—H,s;tas,
Effective Field:
H;=0,+Ap; =0, +An(s;).




CONSTITUTIVE EQUATION OF SOLID WITH MESODEFECTS

*Self-Consistency Equation for Defect Density Tensor
p.=n|s, Ws,v,0)ds,.

*Dimensionless Form

- - - | R
P = jSikZ 1exp((6ik +gpik)s ik _Si?cjdsik'

*General statistics

A (GRS RENCA P

*Dimensionless Material Parameter
G 5~ K
520/ | a~—, A~G, n~R?, /0
An Vo

3 :
G s the elastic modulus, V,~r, is the defect nuclei volume,

IS the distance between
defects.



CHARACTERISTIC SOLID RESPONSES ON DEFECT GROWTH

*Solution of Self-Consistency Equation

Pa ; 5,<5<d,

brittle
*ductile 6,.<06<9;

*fine grain state 0>6,~1.3

6c (o o
*Free Energy Dependence on Stress and Defect Density Tensor for 5<5C
FA




PHENOMENOLOGY OF SOLIDS WITH MESODEFECTS

Non-Equilibrium Free Energy

Generalization of Ginzburg-Landau expansion (uni-axial case):

F:l/zA (6,5&)p2—%3p4—%6’ 6,8,)p°~Do p+x (V,p[.

p:pzz’ OJ:O‘zz’ g:gzz

Gradient term X(le)z describes the non-local interaction in the defect

ensemble (the long wave approximation);

* A, B, C, D are positive phenomenological material parameters;

* x Is the non-locality coefficient.



SELF-SIMILAR SOLUTIONS - COLLECTIVE MODES

* Solitary Wave: ’Blow-up” Regimes of Damage
6,.<6<9; Localization: 5<5C

plix.t)=y p,[1-tanhl¢ I plx,t)=0(0)f (7)

=x—Wt, V:)(A(pa—pm)/ ZL;Z) Z:% , 0(t)=® (1—t—)_m
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STATISTICS OF FAILURE AND FRAGMENTATION

EXPERIMENTAL STUDY OF NONLINEAR CRACK DYNAMICS :
High speed digital camera Remix REM 100-8, photo-elasticity method

‘polarizer 1

 ——

Polarizer 2

FLASH | PMMA
Lamp | | Sample

REM 100-8
Digital
camera

V>V .



EXPERIMENTAL STUDY OF NONLINEAR CRACK DYNAMICS

* Characteristic crack velocity

Crack velocity via initial stress Mirror zone concentration
V,m/s N, >
VB ! ‘s..“ig. —
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« Crack dynamics

V<V, V>V, V>V,



Scaling Analysis of Morphology of Failure Surface

*Profilometry of PMMA Failure
Profilometry of Surfa?éJ rrace New View Digital Surface Profile

*Statistical Roughness Invariants - the Hurst Exponent

hlr)=((elrger)-2(ry P2 | |V =500 mls, (=0.8

r.
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NONLINEAR CRACK DYNAMICS

*Self-similar solutions (attractor types)

1

I~ 5 V<V
_ < aikNK r zfl.j(H)

C

*Critical velocity




SCALING ANALYSIS OF ATTRACTOR TYPES FOR DYNAMIC
VARIABLES

* Failure under Dynamic Crack Propagation.

® Experimental Set-Up ® Stress Dynamics
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*Attractor Types. Experimental Plots of the Poincare Cross Section

® Steady State Crack Propagation ® Crack Branching
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FRAGMENTATION STATISTICS

* Characteristic crack velocity *Fragmentation scenario
V.m/s
B V<V - stress intensity controlled fragmentation

v, et -

- scenario
T > V <V<V . -intermediate (Weibull) statisti
v A3 C g - intermediate (Weibull) statistics
2

T | V>V5  -the Poisson statistics (limit case is
20 0 o MPa mono-disperse statistics as failure wave
precursor )

@)

* Crack dynamics

V<V, V>V,



Earthquakes as blow-up regimes

Statement:

Seismic shocks is the consequence of generation of
the blow-up self-similar collective modes in the slip
ensemble (LS-pexum).

0<0

c

dt Ox

d o 0
L~ S(p)p” +§(xo(pc)py —pj

O: Gn o)

There are three characteristic blow-up self-similar solutions:

1. S-regime corresponds to the development of blow-up dissipative structure on the set of spatial
(fundamental )length L, ;

2. HS-regime corresponds to the development of expanding dissipative blow-up structure;

3. LS-pexum corresponds to the generation of blow-up dissipative structures with a
fundamental length, which depends on the non-linearity and the parameters of initial
disturbances (the amplitude and spatial length).

Kurdumov S.P. Evolution and self-organization laws of complex systems// International Journal of

modern physics. 1988.-vol.1.-Ne4, 10



Earthquakes as blow-up regimes

PROBLEM 1: Kinetics of mesodefects ensemble in the vicinity of critical point D, ( <6 c)
for different initial p-distribution
dp 0 op j \
=S +— & V2
p” (p.)p” ™ (x(p )p ™ v
{P(t, -L)=0 . Jh':-.
= 5 2
P(LL)=0  p(0,x)=Py(x) <, \r -
5 s
OX x=—L I- == - __ |
op - el
“r _ O X ' 1 =
8)( x=L

Fig.1. Initial p-distributions: (1 — uniform, 2 — Gaussian,

3 — Log-normal, 4 — Weibull, 5 — exponential )

A is the amplitude of blow-up structure
L is the length of blow-up structure
P,, is the threshold of p- registration
L, is the fundamental length

oy

V is acoustic wave

Magnitude
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Earthquakes as blow-up regimes
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Scaling laws in seismicity

-Gutenberg-Richter law establishes self-similar features for earthquake frequency-
magnitude data

N(im)=10"""

Spatial scaling for earthquakes: |[N=C-A A, D=2b

where A is characteristic area of earthquake data, D is fractal dimension, D~2b.

*Omori law establishes the temporal decay of the rate of aftershocks following the mainshock

K
N = , | where K, ¢ and p are parameters, p~1
_ - \P
[c—1)
*Modified Omori law describes the temporal decay of aftershocks, where c(m) is
characteristic time refers to energy cascade ( ) dN 1
rit,m= =

Cdr t [1+t/c(m)]’

* Bath law defines universal magnitude difference between the mainshock and
aftershock with maximum magnitude

Am=m__ —m™™® 1.2

as




FAILURE WAVES
Rasorenov, S.V., Kanel, G.J., Fortov V.E. and Abasenov, M.M.(1991). High Pess. Res. 6, 225.

High Speed Framing of Shock Wave Propagation in Glass

(Bourne et al..
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Main Open Questions
How does a failure wave start?
How does a failure wave propagate?
What is the material state behind a failure wave?
What are the kinetics of failure process and failure wave?



Symmetric Taylor Test for Fused-Quartz Rod

D.Radford, W.Proud, J.Field, O.Naimark et al., 2003

2.4

LG T g =
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FRONT VELOCITIES

Af(; 5,‘46 X + 2,46 K ﬁj
N

“T()Uﬁx+f,66

=4,00x + 0,55
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Sal vador Dali’s Sel f-organi zed Criticality
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