Стадийность проявления аномалий сейсмического режима перед землетрясениями Камчатки, Японии и Исландии

<u>Смирнов В.Б.^{1,2}</u>, Петрушов А.А.^{1,2}

1 Физический факультет МГУ имени М. В. Ломоносова, г. Москва, Россия

² Институт физики Земли им. О. Ю. Шмидта РАН, г. Москва, Россия

E-mail: vs60@mail.ru

Задача и содержание

- Аномалии сейсмического режима это наиболее уверенно обнаруживаемые геофизические эффекты, связанные с процессами подготовки землетрясений. Сейсмические каталоги обеспечивают повсеместно в областях сейсмогенерации необходимую пространственную детальность информации.
- В докладе представлены результаты выявления стадийности проявления аномалий параметров сейсмического режима перед землетрясениями различных магнитуд.
- Под стадийностью понимается соотношение времен формирования и развития аномалий различных параметров сейсмического режима.
- Для анализа отобраны землетрясения в областях с двумя генеральными тектоническими типами: в зоне **субдукции** (Камчатка и Япония) и в **рифтовой** зоне (Исландия).
- Пространственно-временные аномалии выявлялись перед отобранными землетрясениями на основе известных «образов предвестников» параметров сейсмического режима.
- Мы не ставим перед собой задачу разработки или модификации прогностических алгоритмов и их практического применения. На настоящем этапе исследование направлено на сопоставление проявлений сейсмических аномалий и выяснение закономерностей следования аномалий во времени.

Результаты опубликованы в журнале «Физика Земли», 2023, №5

Использованные параметры сейсмического режима

• Наклон графика повторяемости *b-value*

RT

• Комплексный параметр RTL $\sum_{k=1}^{p} (I_{i})^{p} = \frac{R_{i}}{R_{i}} = \frac{t-t_{i}}{t-t_{i}}$

$$L(x, y, z; t) \sim \sum_{i: t_i \leq t} \left(\frac{t_i}{l_0}\right) \cdot e^{-\overline{r_0}} \cdot e^{-\overline{\tau_1}}$$

р, r_0, t_0 – параметры алгоритма

• Параметр концентрации сейсмогенных разрывов

- Параметр концентрации сейсмогенных разрывов К_{ср}
- Кумулятивный (накопительный) параметр, не имеет «образа» предвестника
- Величина К_{ср} характеризует близость системы трещин к потере устойчивости
- Критическое значение K^{*}_{cp}, при котором происходит основное землетрясение, варьируется для разных сейсмоактивных регионов. В случае неравномерного и фрактального распределения землетрясений в пространстве величина K^{*}_{cp} зависит также от размера ячейки, по которой производится его оценка [Смирнов, Завьялов 1996].

Отобранные землетрясения

	Дата	Долгота	Широта	Глубина	Энергетический
					класс
Камчатка					(Mw)
1	02.03.1992	160.20	52.76	20	14.6 (6.2)
2	08.06.1993	157.80	51.20	40	15.0 (6.4)
3	12.11.1993	158.83	51.79	40	14.6 (6.2)
4	05.12.1997	162.55	54.64	10	15.5 (6.6)
5	20.02.2011	162.47	55.73	49	14.1 (5.9)
6	28.02.2013	157.77	50.67	61	15.2 (6.5)
Япония	Дата	Долгота	Широта	Глубина	Магнитуда
7	04.10.1994	147.68	43.37	28	8.1
8	25.09.2003	144.10	41.78	45	8.0
9	11.03.2011	142.86	38.10	24	9.1
Исландия	Дата	Долгота	Широта	Глубина	Магнитуда
10	17.06.2000	-20.37	63.975	6.35	5.5
11	29.05.2008	-21.068	63.973	5.14	5.3
Регис	20.06.2020 Ональные ката	логи, предста	вленны ^{66.254} от	крытых исто	очниках 5.6

Первичный анализ: удаление афтершоков, оценка представительной магнитуды

Примеры аномалий

Длительности аномалий

Длительности аномалий RTL и b

Средние (медианные) длительности аномалий параметров b (T_b) и RTL (T_{RTL}) и их средняя (медианная) разность

*К_{ср}*в моменты начала аномалий b и RTL

Теоретически две трещины, расположенные на одной линии, теряют устойчивость, когда отношение расстояния между ними к размеру трещины R/l_{av} близко к 2. Это определяет теоретическое критическое значения как $K_{cp}^* \approx 2$. Зададимся вопросом: **при каких значениях** K_{cp} возникают аномалии параметров b и RTL?

Поскольку оценки K_{cp} обладают масштабным эффектом (зависят от соотношения размера ячейки осреднения и размера очага землетрясения) [Смирнов, Завьялов, 1996], использовались отношения K_{cp}^b и K_{cp}^{RTL} к критическому значению K_{cp}^* (K_{cp}^* - значение K_{cp} в момент землетрясения):

 K^b_{cp}/K^*_{cp} и K^{RTL}_{cp}/K^*_{cp}

K_{cp} в моменты начала аномалий b и RTL

Регион	Дата	Магнитуда	K^b_{cp}/K^*_{cp}	K_{cp}^{RTL}/K_{cp}^{*}	K_{cp}^0/K_{cp}^*
Камчатка	02.03.1992	6.2	1.026	1.031	4.01
	08.06.1993	6.4	1.025	1.014	6.55
	12.11.1993	6.2	1.037	1.029	4.87
	05.12.1997	6.6	1.015	1.009	4.89
	20.02.2011	5.9	1.019	1.016	4.42
	28.02.2013	6.5	1.010	1.009	7.63
Япония	04.10.1994	8.1	1.041	1.010	1.93
	25.09.2003	8.0	1.094	1.044	2.91
	11.03.2011	9.1	1.056	1.002	3.83
Исландия	17.06.2000	5.5	1.026	1.002	2.14
	29.05.2008	5.3	1.010	1.023	2.44
	20.06.2020	5.6	1.098	1.083	4.00
Среднее			1.038	1.023	4.14

Современные методы оценки сейсмической опасности и прогноза землетрясений, ИТПЗ, 2023

Итоги

- Аномалии параметра b в целом обнаруживаются раньше, чем аномалии RTL. Вопрос о природе и механизмах формирования такой стадийности является открытым.
- Формирование аномалий сейсмического режима происходит, когда состояние системы сейсмогенных разрывов практически достигло
 критического значения в сейсмическом цикле.
- Аномалии наклона графика повторяемости b отражают изменение энергетического спектра сейсмичности. Его связывают с образованием более крупных разрывов за счет слияния меньших разрывов при увеличении их концентрации.
- Аномалии RTL отражают формирование сейсмических затиший и последующую форшоковую активизацию сейсмичности. Их связывают как с перераспределением процесса разрушения с младших масштабов на старшие, так и с локализацией разрушения.
- Полученные нами результаты указывают на то, что процесс локализации формируется позже, чем начинает меняться энергетический спектр сейсмичности.