ОЧАГОВЫЕ ПАРАМЕТРЫ ТУРЕЦКИХ ЗЕМЛЕТРЯСЕНИЙ 6 ФЕВРАЛЯ 2023 Г. ПО ТЕЛЕСЕЙСМИЧЕСКИМ ДАННЫМ

<u>Филиппова А.И.^{1,2},</u> Фомочкина А.С.^{1,3}

¹Институт теории прогноза землетрясений и математической геофизики РАН, Москва ²Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН, Москва, Троицк ³РГУ нефти и газа (НИУ) имени И.М. Губкина, г. Москва, Россия *E-mail: aleirk@mail.ru*

> Ш Всероссийская научная конференция с международным участием «Современные методы оценки сейсмической опасности и прогноза землетрясений», посвященная памяти Соловьева А.А. 25-26 октября 2023 г., Москва

1. Введение

По записям поверхностных волн, зарегистрированных на телесейсмических расстояниях, для двух сильных Турецких землетрясений 6 февраля 2023 г. (M_w=7.8 и M_w=7.7) были рассчитаны их очаговые параметры в приближении мгновенного точечного источника и плоской подвижки [Букчин, 1989; Bukchin, 1995].

Рис. 1. Тектоническая схема (а) и сейсмичность исследуемой территории (б). Разломы приведены по [База данных..., 2018; Zelenin et al., 2022], обозначения литосферных плит – по [Bird, 2003], эпицентры землетрясений (M≥4.5, с 1973 г. по 5 февраля 2023 гг.) – по данным ISC-каталога [International..., 2023], рельеф – согласно глобальной модели ЕТОРО 2022 [ЕТОРО..., 2023]. Сокращения: Афр. пл. – Африканская плита.

2. Данные

20 станции сетей II, IU и IC [Albuquerque..., 1992, 2014; Scripps..., 1986]. Эпицентральные расстояния: 2607–9404 км (рис. 2а) и 2309–9689 км (рис. 2б).

Спектры поверхностных волн: метод спектрально-временного анализа [Левшин и др., 1986]. Диапазон периодов: 70–250 с для первого землетрясения и 70–210 с для второго.

Рис. 2. Используемые сейсмические станции с примерами фильтрации записей для первого (а) и второго (б) сильных Турецких землетрясений 6 февраля 2023 г. Коды станций соответствуют международному стандарту. LHZ – вертикальная компонента записи, LHT – трансверсальная компонента записи (результат вращения горизонтальных компонент, направленных на восток (LHE) и север (LHN)).

Приближение мгновенного точечного источника [Букчин, 1989]

Очаг землетрясения моделируется разрывом сплошности по плоской площадке. Силовой эквивалент очага – двойной диполь (double-couple).

$$M_{ij} = M_0(n_i d_j + n_j d_i)$$

n, d – единичные векторы нормали к плоскости разлома и подвижки **Периоды:** T1=70-250 c, T2=70-210 c

Определяемые параметры:

- сейсмический момент (моментная магнитуда)
- глубина очага
- положение нодальных плоскостей (азимут, падение, простирание)

Рис. 3. Параметры нодальных плоскостей **Strike** – азимут простирания (0–360°) **Dip** – угол падения (0–90°) **Slip/Rake** – угол подвижки (-180...+180°) (определяет смещение висячего блока относительно лежачего)

3. Методы

Приближение сдвиговой дислокации эллиптической формы [Bukchin, 1995]

Определяемые параметры

Шесть интегральных параметров, характеризующих геометрию разрыва и развитие очага во времени:

- продолжительность процесса в очаге (Δt)
- длины большой и малой осей эллипса источника (l_{max} и l_{min})
- абсолютное значение средней скорости мгновенного центроида (v)
- угол между большой осью эллипса источника и осью простирания (\u03c6_l)
- угол между направлением движения мгновенного центроида и осью простирания (ф_v).

Для возможной идентификации истинной плоскости разрыва [Букчин, 2017] расчеты проводились для обеих нодальных плоскостей фокальных механизмов, полученных на предыдущем этапе.

Рис. 4. Пример определяемых параметров для случая Быстринского землетрясения (Мw=5.6, 2020 г., Прибайкалье) [Filippova et al., 2022]

Периоды: Т1=70-150 с, Т2=70-120 с

Модели среды

Строение коры в окрестности очага и под сейсмическими станциями - 3SMAC [Nataf, Ricard, 1996]

Строение мантии и расчет затухания поверхностных волн - PREM [Dziewonski, Anderson, 1981]

4. Результаты

Скалярный сейсмический момент составил $M_0 = 6.19 \cdot 10^{20}$ H·м для первого события и $M_0 = 4.29 \cdot 10^{20}$ H·м для второго, что соответствует моментным магнитудам $M_w = 7.8$ и $M_w = 7.7$.

Полученные нами фокальные механизмы показывают, что очаги исследуемых землетрясений сформировались под влиянием сжатия СВ-ЮЗ ориентации и растяжения СЗ-ЮВ ориентации (рис. 5а, в).

Рис. 5. Очаговые параметры первого (а, б) и второго (в, г) сильных Турецких землетрясений 6 февраля 2023 г. в приближении мгновенного точечного источника: механизм очага (а, в) и зависимость частной функции нормированной невязки от глубины очага (б, г). Обозначения: NP – нодальная плоскость, ось T/P – ось растяжения/сжатия, strike – направление простирания, dip – угол падения, slip – угол подвижки, агт – азимут, pl – угол погружения. На рис. (г) пунктирная линия соответствует частной функции нормированной невязки, рассчитанной с учетом пространственно-временных размеров очага.

Время действия источника (t) и длина разрыва (L) для первого события составили 52.5 с и 180 км, а для второго – около 30 с и 180 км.

Плоскость разрыва

Для первого события - простирание 63° (соответствует простиранию зоны Восточно-Анатолийского разлома); для второго – простирание 270° (соответствует общему простиранию системы разломов Сургу-Чардак). Таким образом, оба землетрясения представляют собой левосторонние сдвиги, что согласуется с известными данными о кинематике разломов, к которым они приурочены [Balkaya et al., 2021; Bulut et al., 2012; Güvercin et al., 2022].

Рис. 6. Частные функции нормированной невязки для интегральных параметров очагов первого (а) и второго (б) сильных Турецких землетрясений 6 февраля 2023 г., рассчитанные для нодальных плоскостей NP1 (сплошные линии) и NP2 (пунктир), показанных на рис. 5а, в.

5. Обсуждение

Таблица 1. Очаговые параметры сильных Турецких землетрясений 6 февраля 2023 г. в приближении точечного источника по данным различных сейсмологических агентств.

Землетр	Агентств	h , км	M ₀ •10 ²⁰ ,	$\mathbf{M}_{\mathbf{w}}$
ясение	0		Н∙м	
06.02.2023 01 ч 18 мин	GCMT	14.9	6.10	7.8
	NEIC ^{w,*}	17.5	5.39	7.8
	NEIC ^{cmt}	32.6	6.78	7.8
	GEOFON	10^{f}	4.30	7.7
	CPPT	14	-	7.8
	ERD	18	-	7.8
	INGV	23	-	7.7
	IPGP	13	-	8.0
	KOERI	10	-	7.8
	MOS	-	-	-
	OCA	11	-	7.8
об.02.2023 10 ч 24 мин	GCMT	12^{f}	4.97	7.7
	NEIC ^{w,*}	13.5	2.64	7.6
	NEIC ^{bw}	19	2.47	7.5
	GEOFON	15	3.00	7.6
	CPPT	12	-	7.8
	ERD	16	-	7.6
	INGV	14	-	7.7
	IPGP	13	-	7.7
	KOERI	10	-	7.6
	MOS	-	-	-
	OCA	10	-	7.7

Таблица 2. Скалярный сейсмический момент и моментная магнитуда сильных Турецких землетрясений 6 февраля 2023 г. по литературным данным.

Источник	06.02.2023 01 ч 17		06.02.2023 10 ч		
	МИН		24 мин		
	$M_0 \cdot 10^{20}$,	M_w	$M_0 \cdot 10^{20}$,	M_{w}	
	Н∙м		Н∙м		
Barbot et	5.40	7.8	3.30	7.6	
al., 2023					
Jiang et al.,	-	8.0	-	7.9	
2023					
Mai et al.,	10.3	8.0	5.03	7.8	
2023 ^{Р-волны}					
Mai et al.,	6.13	7.8	3.32	7.7	
2023 ^{SAR}					
Melgar et	6.51	7.8	3.64	7.6	
al., 2023					
Okuwaki et	9.60	7.9	3.20	7.6	
al., 2023					
Zahradnik	4.50	7.7	2.30	7.5	
et al., 2023					

Примечание. Верхние индексы у [Mai et al., 2023] указывают на тип используемых данных: Р-волны – длиннопериодные записи Р-волн, SAR – спутниковая радарная интерферометрия (данные Sentinel-1).

5. Обсуждение

Таблица 3. Механизмы очагов сильных Турецких землетрясений 6 февраля 2023 г. в приближении точечного источника по данным различных сейсмологических агентств.

Землетря	Агентств	Нодальная плоскость		t, c	Φ, °	
сение	0	strike, °	dip, °	slip, °		
НИН	GCMT	54	70	11	37.8	15
	NEIC ^{w,*}	228	89	-1	56.0	34
	NEIC ^{cmt}	234	79	14	45.1	45
11	GEOFON	51	75	-4	-	19
E .	CPPT	56	67	11	-	12
0	ERD	233	74	18	-	52
N O	INGV	237	79	0	-	42
06.02.2	IPGP	230	81	-18	-	43
	KOERI	222	64	-27	-	63
	MOS	218	74	-2	-	52
	OCA	65	70	11	-	11
H	GCMT	261	42	-8	35.8	9
	NEIC ^{w,*}	277	78	4	31.5	34
N N N N N N N N N N N N N N N N N N N	NEIC ^{bw}	276	82	-6	-	37
5	GEOFON	89	88	10	-	47
06.02.2023 10 ч	CPPT	256	24	-14	-	23
	ERD	90	86	13	-	49
	INGV	275	62	1	-	18
	IPGP	270	60	-9	-	15
	KOERI	273	67	-9	-	22
	MOS	250	59	-22	-	21
	OCA	275	90	20	-	51

 Φ - угол в 3-D пространстве, на который нужно повернуть один двойной диполь, чтобы получить другой [Kagan, 2007]. Диапазон изменения Φ составляет от 0°, что соответствует полностью идентичным двойным диполям, до 120°. В качестве референтных двойных диполей принимались фокальные механизмы, полученные в данной работе (рис. 5а, в).

Причины различий в решениях:

- Неоднозначность определения компонент $M_{r\theta}$ и $M_{r\phi}$ девиаторных тензоров сейсмического момента [Букчин, 2006; Bukchin et al., 2010]. - Оба исследуемых события не могут быть полностью описаны в приближении двойного диполя, принятом нами при расчетах, поскольку они характеризовались сложной геометрией очага [Barbot et al., 2023; Chen et al., 2023; Karabulut et al., 2023; Zahradnik et al., 2023; и др.]

5. Обсуждение

Таблица 4. Длительность источника и длина разрыва для сильных Турецких землетрясений 6 февраля 2023 г.

Источник	06.02.2023 01 ч		06.02.2023 10 ч		
	17 мин		24 мин		
	t, c	L, km	t, c	L, km	
NEIC	90*	300	38*	160	
Barbot et al.,	-	310	-	150	
2023					
Chen et al., 2023	80	270	30	110	
Delouis et al., 2023	90	300	-	-	
Karabacak et al., 2023	-	270	-	-	
Karabulut et al., 2023	80-100	300	40	140	
Mai et al., 2023	80	320-350	35	150-170	
Melgar et al., 2023	60	350	30	160	
Okuwaki et al., 2023	75	350	15	80	
Zahradnik et al., 2023	70	300	25	100	

Примечание. * – длительность, полученная для источника конечных размеров по методу [Ji et al., 2002], отличается от оценок длительности для точечного источника (табл. 3).

t₁=52.5 с, L₁=180 км и t₂=30 с, L₂=180 км

6. Выводы

1. В приближении мгновенного точечного источника для первого землетрясения, произошедшего в 1 ч 17 мин, были получены значения скалярного сейсмического момента $(M_0=6.19\cdot10^{20} \text{ H}\cdot\text{m})$, моментной магнитуды $(M_w=7.8)$ и глубины очага (h=12 км). Для второго землетрясения (10 ч 24 мин) значения этих параметров составили $M_0=4.29\cdot10^{20}$ H·м, $M_w=7.7$, h=8–10 км. Очаги обоих событий сформировались под влиянием сжатия CB-ЮЗ ориентации и растяжения C3-ЮВ ориентации, что соответствует региональному полю напряжений.

2. Проведенные для двух нодальных плоскостей расчеты интегральных параметров очага, характеризующих геометрию разрыва и его развитие во времени, позволили идентифицировать истинные плоскости разрыва для рассматриваемых землетрясений. Для первого события это плоскость с направлением простирания 63° (соответствует простиранию зоны Восточно-Анатолийского разлома), углом падения 60° и углом подвижки 6° ; для второго – плоскость с направлением простирания 270° (соответствует общему простиранию системы разломов Сургу-Чардак), углом падения 45° и углом подвижки -7° . Таким образом, оба землетрясения представляют собой левосторонние сдвиги, что согласуется с известными данными о кинематике разломов, к которым они приурочены.

3. Для первого землетрясения полученные нами оценки длительности разрыва и его длины (t=52.5 c, L=180 км), вероятно, относятся не ко всему разрыву, а только к его основной фазе, приуроченной к северо-восточным сегментам Восточно-Анатолийского разлома и характеризующейся максимальными смещениями и значениями выделившегося сейсмического момента. Полученные нами для второго землетрясения значения t=30 с и L=180 км характеризуют полностью весь разрыв.

БЛАГОДАРЮ ЗА ВНИМАНИЕ!

