

Оценка скорости роста палинстрофии в двумерной идеальной гидродинамике: опыт подхода на основе вычислительного эксперимента

В. Желиговский

Институт теории прогноза землетрясений и математической геофизики РАН

Уравнение Эйлера: $\partial \mathbf{v}/\partial t + (\mathbf{v} \cdot \nabla)\mathbf{v} = \nabla p$, $\nabla \cdot \mathbf{v} = 0$

- Течения на торе $\mathbb{T}^2 = [0, 2\pi]^2$ (2π -периодические по пространству).
- Двумерность: $\mathbf{v}(x_1, x_2) = (v_1, v_2, 0) \quad \Rightarrow \quad \boldsymbol{\omega} \equiv \nabla \times \mathbf{v} = (0, 0, \omega)$
- Эквивалентное уравнение для завихренности: $\partial \omega / \partial t + (\mathbf{v} \cdot \nabla) \, \omega = 0$
- Уравнение эволюции **палинстрофии** течения $\mathfrak{P} = \int_{\mathbb{T}^2} |\nabla \omega|^2 / 2 \, \mathrm{d} \mathbf{x}$:

$$\frac{\mathrm{d}\mathfrak{P}}{\mathrm{d}t} = -\sum_{k,m} \int_{\mathbb{T}^2} \frac{\partial v_k}{\partial x_m} \frac{\partial \omega}{\partial x_k} \frac{\partial \omega}{\partial x_m} \, \mathrm{d}\mathbf{x} \equiv \sigma/2.$$

•
$$\nabla \cdot \mathbf{v} = 0$$
, $\langle \mathbf{v} \rangle = 0$ \Leftrightarrow $\mathbf{v} = -\nabla \times (\Delta^{-1} \boldsymbol{\omega})$ (Δ – лапласиан.)

$$\Rightarrow \left| \frac{\mathrm{d} \mathfrak{P}}{\mathrm{d} t} \right| \le 2 \max_{\mathbb{T}^2} \left| \frac{\partial v_k}{\partial x_m} \right| \int_{\mathbb{T}^2} |\nabla \omega|^2 \mathrm{d} \mathbf{x}$$

В $\partial \mathbf{v}/\partial x_m = \nabla \times (\Delta^{-1}\partial \boldsymbol{\omega}/\partial x_m)$ на $\boldsymbol{\omega}$ действует псевдодифференциальный оператор нулевого порядка.

• Верно ли, что $|d\mathfrak{P}/dt| \le c \mathfrak{P} \max_{\mathbb{T}^2} |\omega|$?

- $D\omega/Dt \equiv \partial\omega/\partial t + (\mathbf{v} \cdot \nabla)\omega = 0$
- \Rightarrow ω постоянна вдоль траектории любой жидкой частицы
- \Rightarrow $\min \omega$ и $\max \omega$ сохраняются во времени.

Доказано: $\mathrm{d}\mathfrak{P}/\mathrm{d}t \leq c\,\mathfrak{P}\ln(\mathrm{e}+\mathfrak{P})\max_{\mathbb{T}^2}|\omega|$

 \Rightarrow по лемме Гронуолла $\mathfrak{P} \leq c \exp(c \exp(ct))$

[Bardos C., Benachour S., Zerner M. Analycité des solutions périodiques de l'équation d'Euler en deux dimensions. C. R. Acad. Sc. Paris, Série A, 282, 1976, 995–998;

Bardos C., Benachour S. Domaine d'analycité des solutions de l'équation d'Euler dans un ouvert de \mathbb{R}^n . Annali della Scuola Normale Superiore di Piza, Classe di Scienzi 4^e série, 4 (4), 1977, 647–687.]

Желательно: $\mathrm{d}\mathfrak{P}/\mathrm{d}t \leq c\,\mathfrak{P}\max_{\mathbb{T}^2}|\omega(\mathbf{x},t)|\ln^{\epsilon}(\mathrm{e}+\mathfrak{P})$

для любого фиксированного c и $\epsilon < 1$.

При $\epsilon=0$ из $\mathrm{d}\mathfrak{P}/\mathrm{d}t\leq c\,\mathfrak{P}\max_{\mathbb{T}^2}|\omega|$ по лемме Гронуолла получили бы $\mathfrak{P}\leq c\exp(ct)$ – как в расчетах.

• Норма $\|\cdot\|_q$ в соболевском пространстве $H_q(\mathbb{T}^2)$:

$$||g||_q^2 = \sum_{\mathbf{n}\neq 0} |\widehat{g}_{\mathbf{n}}|^2 |\mathbf{n}|^{2q},$$
 где $g = \sum_{\mathbf{n}\neq 0} \widehat{g}_{\mathbf{n}} e^{i\mathbf{n}\cdot\mathbf{x}}$

- $\bullet \mathfrak{P} = 2\pi^2 \|\omega\|_1^2$
- Верно ли $\sigma/(\|\omega\|_1^2 \max_{\mathbb{T}^2} |\omega|) \le c$, где $\sigma \equiv -2 \sum_k \int \frac{\partial v_k}{\partial x_m} \frac{\partial \omega}{\partial x_k} \frac{\partial \omega}{\partial x_m} \, \mathrm{d}\mathbf{x}$?

•
$$\nabla \cdot \mathbf{v} = 0 \implies \sigma = 2 \int_{\mathbb{T}^2} \left(\frac{\partial v_1}{\partial x_1} \left(\left(\frac{\partial \omega}{\partial x_2} \right)^2 - \left(\frac{\partial \omega}{\partial x_1} \right)^2 \right) - \left(\frac{\partial v_1}{\partial x_2} + \frac{\partial v_2}{\partial x_1} \right) \frac{\partial \omega}{\partial x_1} \frac{\partial \omega}{\partial x_2} \right) d\mathbf{x}$$

- \bullet Слагаемые справа переходят друг в друга при повороте осей координат на $\pi/4$.
- $\omega(\mathbf{x},t) = \sum_{\mathbf{n}\neq 0} \widehat{\omega}_{\mathbf{n}}(t) e^{i\mathbf{n}\cdot\mathbf{x}} \quad (\widehat{\omega}_{\mathbf{n}} = \overline{\widehat{\omega}_{-\mathbf{n}}}) \quad \Rightarrow \quad \mathbf{v} = i\sum_{\mathbf{k}\neq 0} |\mathbf{k}|^{-2} \Re \mathbf{k} \, \widehat{\omega}_{\mathbf{k}}(t) e^{i\mathbf{k}\cdot\mathbf{x}},$

где $\mathbf{\mathfrak{R}}:\mathbf{k}\mapsto (k_2,-k_1)$ – поворот по часовой стрелке на $\pi/2$

- $\bullet \Re \mathbf{k} \cdot \mathbf{n} = -\mathbf{k} \cdot \Re \mathbf{n}$
- Уравнение Эйлера: $d\widehat{\omega}_{\mathbf{n}}/dt = \sum_{\mathbf{k}\neq 0} |\mathbf{k}|^{-2} \Re \mathbf{k} \cdot (\mathbf{n} \mathbf{k}) \, \widehat{\omega}_{\mathbf{k}} \widehat{\omega}_{\mathbf{n} \mathbf{k}}$

Cущественное сокращение в σ

 $i. \, \mathrm{d}\widehat{\omega}_{\mathbf{n}}/\mathrm{d}t = \sum_{\mathbf{k}\neq 0} |\mathbf{k}|^{-2} \, \mathbf{\mathfrak{R}} \mathbf{k} \cdot (\mathbf{n} - \mathbf{k}) \, \widehat{\omega}_{\mathbf{k}} \widehat{\omega}_{\mathbf{n} - \mathbf{k}} \,$ умножим на $2|\mathbf{n}|^{2p} \widehat{\omega}_{-\mathbf{n}}$:

$$\frac{\mathrm{d}\|\boldsymbol{\omega}\|_{p}^{2}}{\mathrm{d}t} = 2 \sum_{\mathbf{n}_{1}+\mathbf{n}_{2}+\mathbf{n}_{3}=0, \ \mathbf{n}_{j}\neq0} (\mathbf{\Re}\mathbf{n}_{2}\cdot\mathbf{n}_{1})|\mathbf{n}_{2}|^{-2}|\mathbf{n}_{3}|^{2p} \widehat{\boldsymbol{\omega}}_{\mathbf{n}_{1}}\widehat{\boldsymbol{\omega}}_{\mathbf{n}_{2}}\widehat{\boldsymbol{\omega}}_{\mathbf{n}_{3}} \qquad (\mathbf{n}_{2}\leftrightarrow\mathbf{n}_{3})$$

$$= \sum_{\mathbf{n}_{1}+\mathbf{n}_{2}+\mathbf{n}_{3}=0, \ \mathbf{n}_{j}\neq0} (\mathbf{\Re}\mathbf{n}_{2}\cdot\mathbf{n}_{1})(|\mathbf{n}_{2}|^{-2}|\mathbf{n}_{3}|^{2p} - |\mathbf{n}_{3}|^{-2}|\mathbf{n}_{2}|^{2p}) \widehat{\boldsymbol{\omega}}_{\mathbf{n}_{1}}\widehat{\boldsymbol{\omega}}_{\mathbf{n}_{2}}\widehat{\boldsymbol{\omega}}_{\mathbf{n}_{3}} \qquad (*)$$

$$= \sum_{\mathbf{n}_1 + \mathbf{n}_2 + \mathbf{n}_3 = 0, \mathbf{n}_j \neq 0} \frac{(\mathbf{\Re} \mathbf{n}_2 \cdot \mathbf{n}_1) \widehat{\omega}_{\mathbf{n}_1} \widehat{\omega}_{\mathbf{n}_2} \widehat{\omega}_{\mathbf{n}_3}}{\alpha_1 + \alpha_2 + \alpha_3} \det \begin{bmatrix} |\mathbf{n}_1|^{2p} & |\mathbf{n}_2|^{2p} & |\mathbf{n}_3|^{2p} \\ \alpha_1 & \alpha_2 & \alpha_3 \\ |\mathbf{n}_1|^{-2} & |\mathbf{n}_2|^{-2} & |\mathbf{n}_3|^{-2} \end{bmatrix}$$

- (*) минор при α_1 ; $\mathbf{n}_1, \mathbf{n}_2, \mathbf{n}_3 \to \mathbf{n}_2, \mathbf{n}_3, \mathbf{n}_1$ при α_2 ; $\to \mathbf{n}_3, \mathbf{n}_1, \mathbf{n}_2$ при α_3 . α_j произвольные константы, не зависящие от \mathbf{n}_j . При $\alpha_1 = \alpha_2 = \alpha_3$:
- p = -1: сохранение кинетической энергии течения $\|\mathbf{v}\|_0^2$, p = 0: нормы Лебега завихренности $\|\omega\|_0^2$ (\Rightarrow энстрофии $\|\nabla \mathbf{v}\|_0^2$);
- p = -2, -1/2 и 1: определитель сводится к определителю Вандермонда.

$$\sigma = \sum_{\mathbf{n}_1 + \mathbf{n}_2 + \mathbf{n}_3 = 0, \ \mathbf{n}_j \neq 0} (\mathbf{n}_2 \cdot \mathbf{\Re} \mathbf{n}_1) \frac{(|\mathbf{n}_1|^2 - |\mathbf{n}_2|^2)(|\mathbf{n}_2|^2 - |\mathbf{n}_3|^2)(|\mathbf{n}_3|^2 - |\mathbf{n}_1|^2)}{3 \, |\mathbf{n}_1|^2 |\mathbf{n}_2|^2 |\mathbf{n}_3|^2} \, \widehat{\omega}_{\mathbf{n}_1} \widehat{\omega}_{\mathbf{n}_2} \widehat{\omega}_{\mathbf{n}_3}$$

 Δ со сторонами $\mathbf{n}_1, \mathbf{n}_2, \mathbf{n}_3$ равнобедренный $\Rightarrow \widehat{\omega}_{\mathbf{n}_1} \widehat{\omega}_{\mathbf{n}_2} \widehat{\omega}_{\mathbf{n}_3}$ не входит в σ .

$$ii. \qquad \sigma = \sum_{0 \neq \mathbf{k} \neq \mathbf{n} \neq 0} |\mathbf{k}|^{-2} (\mathbf{n} \cdot \mathfrak{R} \mathbf{k}) (|\mathbf{n}|^2 - |\mathbf{n} - \mathbf{k}|^2) \widehat{\omega}_{\mathbf{k}} \widehat{\omega}_{\mathbf{n} - \mathbf{k}} \widehat{\omega}_{-\mathbf{n}}$$

$$= 2 \sum_{0 \neq \mathbf{k} \neq \mathbf{n} \neq 0} |\mathbf{k}|^{-2} (\mathbf{n} \cdot \mathfrak{R} \mathbf{k}) ((\mathbf{n} - \mathbf{k}) \cdot \mathbf{k}) \widehat{\omega}_{\mathbf{k}} \widehat{\omega}_{\mathbf{n} - \mathbf{k}} \widehat{\omega}_{-\mathbf{n}}$$

$$(\text{T.K. } \sum_{0 \neq \mathbf{k} \neq \mathbf{n} \neq 0} (\mathbf{n} \cdot \mathfrak{R} \mathbf{k}) \widehat{\omega}_{\mathbf{k}} \widehat{\omega}_{\mathbf{n} - \mathbf{k}} \widehat{\omega}_{-\mathbf{n}} = 0)$$

$$\mathbf{n} \to \mathbf{k} - \mathbf{n} = 2 \sum_{0 \neq \mathbf{k} \neq \mathbf{n} \neq 0} |\mathbf{k}|^{-2} \left((\mathbf{n} - \mathbf{k}) \cdot \mathfrak{R} \mathbf{k} \right) (\mathbf{n} \cdot \mathbf{k}) \widehat{\omega}_{\mathbf{k}} \widehat{\omega}_{\mathbf{n} - \mathbf{k}} \widehat{\omega}_{-\mathbf{n}}$$

Обозначим $\theta_{\mathbf{a},\mathbf{b}}$ угол от \mathbf{a} к \mathbf{b} против часовой стрелки.

$$\sigma = \sum_{0 \neq \mathbf{k} \neq \mathbf{n} \neq 0} |\mathbf{n}| |\mathbf{n} - \mathbf{k}| \left(\sin \theta_{\mathbf{n}, \mathbf{k}} \cos \theta_{\mathbf{n} - \mathbf{k}, \mathbf{k}} + \cos \theta_{\mathbf{n}, \mathbf{k}} \sin \theta_{\mathbf{n} - \mathbf{k}, \mathbf{k}} \right) \widehat{\omega}_{\mathbf{k}} \widehat{\omega}_{\mathbf{n} - \mathbf{k}} \widehat{\omega}_{-\mathbf{n}}$$

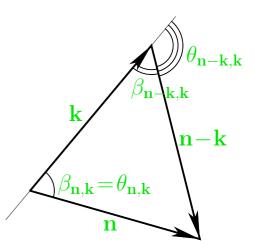
$$= \sum_{0 \neq \mathbf{k} \neq \mathbf{n} \neq 0} |\mathbf{n}| |\mathbf{n} - \mathbf{k}| \sin \left(\theta_{\mathbf{n}, \mathbf{k}} + \theta_{\mathbf{n} - \mathbf{k}, \mathbf{k}} \right) \widehat{\omega}_{\mathbf{k}} \widehat{\omega}_{\mathbf{n} - \mathbf{k}} \widehat{\omega}_{-\mathbf{n}}$$

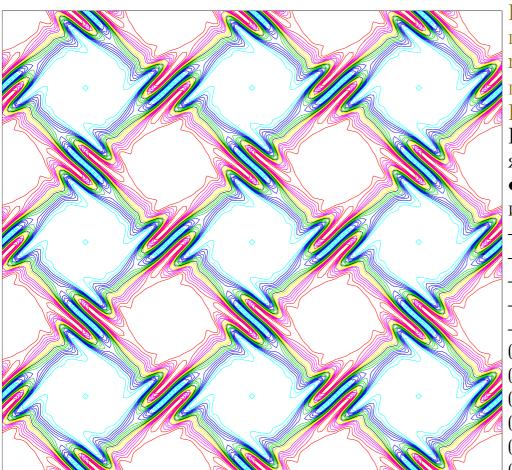
$$\sigma = \sum_{0 \neq \mathbf{k} \neq \mathbf{n} \neq 0} |\mathbf{n}| |\mathbf{n} - \mathbf{k}| \sin(\beta_{\mathbf{n} - \mathbf{k}, \mathbf{k}} - \beta_{\mathbf{n}, \mathbf{k}}) \widehat{\omega}_{\mathbf{k}} \widehat{\omega}_{\mathbf{n} - \mathbf{k}} \widehat{\omega}_{-\mathbf{n}}$$

- \bullet Существенные сокращения в σ (в т.ч. не содержит "равнобедренные Δ волновых векторов").
- Каждое подпространство $\widehat{\omega}_{\mathbf{n}}$, отвечающее одномерному подпространству волновых векторов \mathbf{n} , входит в σ в виде линейного функционала (из-за множителя $\mathbf{n} \cdot \mathfrak{R} \mathbf{k}$).
- ullet σ квадратичная форма мнимых частей $\widehat{\omega}_{\mathbf{n}}$.
- \Rightarrow Не исключено выполнение неравенства $|\sigma| \le c ||\omega||_1^2 \max_{\mathbb{T}^2} |\omega|$ (*).

Численная проверка

Характер роста $C_p = \max_{\omega_p} \left(\sigma_p / (\|\omega_p\|_1^2 \max_{\mathbb{T}^2} |\omega_p|) \right)$ для конечных рядов Фурье $\omega_p = \sum_{\mathbf{n} \neq 0, \ 0 \leq |n_j| \leq N_p} \widehat{\omega}_{\mathbf{n}} e^{i\mathbf{n} \cdot \mathbf{x}}, \quad N_p = 2^p - 1, \quad p \to \infty (= 10 \div 15)$ может указать на более правдоподобную модификацию (*) – желательно $\sigma \leq c \|\omega\|_1^2 \max_{\mathbb{T}^2} |\omega(\mathbf{x}, t)| \ln^{\epsilon} (e + \|\omega\|_1 / \max_{\mathbb{T}^2} |\omega(\mathbf{x}, t)|)$ для любого фиксированного c и $\epsilon < 1$.





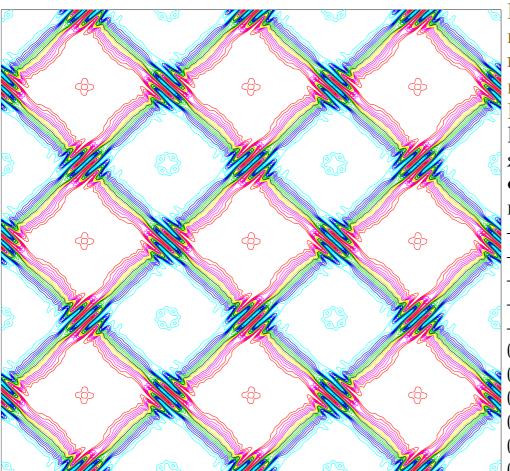
Изолинии $\omega_p = \sum_{\mathbf{n}} \widehat{\omega}_{\mathbf{n}} e^{i\mathbf{n} \cdot \mathbf{x}}$, где $|n_j| \leq 2^p - 1, \ p = 3$, $\max_{\mathbb{T}^2} |\omega_p| = 1$, реализую-

щей $C_p = \max_{\omega_p} \sigma / \|\omega_p\|_1^2$. Вычислено $C_3 = 0.5112$.

Показано 9 смежных ячеек периодичности.

• Пветовая колировка

- Цветовая кодировка изолиний:
- -0.9, -0.8 красный -0.7, -0.6 светлофиолетовый
- -0.5, -0.4 темнофиолетовый -0.3, -0.2 желтый
- -0.1 коричневый 0 черный
- 0.1 светлозеленый 0.2, 0.3 темнозеленый
- 0.4, 0.5 светлосиний
- 0.6, 0.7 темносиний 0.8, 0.9 морской волны



Изолинии $\omega_p = \sum_{\mathbf{n}} \widehat{\omega}_{\mathbf{n}} e^{i\mathbf{n} \cdot \mathbf{x}}$, где $|n_j| \leq 2^p - 1$, p = 4, $\max_{\mathbb{T}^2} |\omega_p| = 1$, реализующей $C_p = \max_{\omega_p} \sigma / \|\omega_p\|_1^2$. Вычислено $C_4 = 0.7797$. Показано 9 смежных

- ячеек периодичности.
 Цветовая кодировка изолиний:
- -0.9, -0.8 красный -0.7, -0.6 светлофиолетовый
- -0.5, -0.4 темнофиолетовый -0.3, -0.2 желтый
- -0.1 коричневый 0 черный
- 0.1 светлозеленый
- 0.2, 0.3 темнозеленый 0.4, 0.5 светлосиний
- 0.6, 0.7 темносиний
- 0.8, 0.9 морской волны

Инвариантность относительно поворотов вокруг глобального максимума

Перенесем начало координат $\mathbf{x} = 0$ в точку глобального максимума $|\omega(\mathbf{x})|$.

і. Центральная симметрия. Обозначим

$$A^{2} = \sum_{\mathbf{n} \neq 0} |\operatorname{Re} \widehat{\omega}_{\mathbf{n}} \mathbf{n}|^{2}, \quad B^{2} = \sum_{\mathbf{n} \neq 0} |\operatorname{Im} \widehat{\omega}_{\mathbf{n}} \mathbf{n}|^{2} \implies \|\omega\|_{1}^{2} = A^{2} + B^{2};$$

$$a_{\mathbf{n}} = \operatorname{Re} \widehat{\omega}_{\mathbf{n}} / A, \quad b_{\mathbf{n}} = \operatorname{Im} \widehat{\omega}_{\mathbf{n}} / B, \quad a(\mathbf{x}) = \sum a_{\mathbf{n}} e^{i\mathbf{n} \cdot \mathbf{x}}, \quad b(\mathbf{x}) = \sum i b_{\mathbf{n}} e^{i\mathbf{n} \cdot \mathbf{x}}$$

(суммирование по $\mathbf{n} \neq 0$ с компонентами $0 \leq |n_j| \leq N_p$);

$$\sigma(a,b) = \sum_{\mathbf{n}_1 + \mathbf{n}_2 + \mathbf{n}_3 = 0, \ \mathbf{n}_j \neq 0} \mathbf{n}_2 \cdot \Re \mathbf{n}_1 \frac{(|\mathbf{n}_1|^2 - |\mathbf{n}_2|^2)(|\mathbf{n}_2|^2 - |\mathbf{n}_3|^2)(|\mathbf{n}_3|^2 - |\mathbf{n}_1|^2)}{3|\mathbf{n}_1|^2|\mathbf{n}_2|^2|\mathbf{n}_3|^2} a_{\mathbf{n}_1} b_{\mathbf{n}_2} b_{\mathbf{n}_3},$$

$$C_p(\omega) = A|\omega(0)|^{-1}\widetilde{C}_p, \qquad \widetilde{C}_p = (\sigma(a, a)A^2 - 3\sigma(a, b)B^2)(A^2 + B^2)^{-1}.$$

 $a_{\mathbf{n}}$ и $b_{\mathbf{n}}$ не зависят от A и $B \Rightarrow A|\omega(0)|^{-1} = |\sum_{\mathbf{n}} a_{\mathbf{n}}|^{-1}$ не зависит от A и B.

$$\widetilde{C}_p$$
 монотонно меняется от $\sigma(a,a)$ до $-3\sigma(a,b)$ при росте B/A от 0 до ∞ .

 $\max_{A,B} \tilde{C}_p = \max(\sigma(a,a), -3\sigma(a,b))$, реализуемые при B=0 и A=0, соответственно. В первом случае глобальный $\max_{\mathbb{T}^2} |a(\mathbf{x})|$ остается в $\mathbf{x}=0$:

$$|a(\mathbf{x})| \leq \frac{|Aa(\mathbf{x}) + Bb(\mathbf{x})| + |Aa(\mathbf{x}) - Bb(\mathbf{x})|}{2A} = \frac{|\omega(\mathbf{x})| + |\omega(-\mathbf{x})|}{2A} \leq \frac{|\omega(0)|}{A} = |a(0)|,$$

 $\Rightarrow C_p(\omega)$ не убывает при переходе от исходной $\omega(\mathbf{x})$ к центрально-симметричной $a(\mathbf{x})$. Во втором – только оценка, т.к. при A=0 (i) $C_p(\omega_p)=0$, и (ii) $\mathbf{x}=0$ не есть точка глобального максимума $|\omega(\mathbf{x})|$, т.к. b(0)=0.

ii. Симметрия относительно поворотов на $\pi/2$ для центрально-симметричной $\omega.$ Рассуждение аналогично. Обозначим

$$\omega_{\mathbf{n}}^{+} = (\widehat{\omega}_{\mathbf{n}} + \widehat{\omega}_{\mathfrak{R}\mathbf{n}})/2, \quad \omega_{\mathfrak{R}\mathbf{n}}^{+} = \omega_{\mathbf{n}}^{+}, \quad \omega_{\mathbf{n}}^{-} = (\widehat{\omega}_{\mathbf{n}} - \widehat{\omega}_{\mathfrak{R}\mathbf{n}})/2, \quad \omega_{\mathfrak{R}\mathbf{n}}^{-} = -\omega_{\mathbf{n}}^{-},$$

$$A^{2} = \sum |\omega_{\mathbf{n}}^{+} \mathbf{n}|^{2}, \qquad B^{2} = \sum |\omega_{\mathbf{n}}^{-} \mathbf{n}|^{2} \quad \Rightarrow \quad ||\omega_{p}||_{1}^{2} = A^{2} + B^{2};$$

$$a_{\mathbf{n}} = \omega_{\mathbf{n}}^{+}/A, \quad b_{\mathbf{n}} = \omega_{\mathbf{n}}^{-}/B, \quad a(\mathbf{x}) = \sum a_{\mathbf{n}} e^{i\mathbf{n}\cdot\mathbf{x}}, \quad b(\mathbf{x}) = \sum b_{\mathbf{n}} e^{i\mathbf{n}\cdot\mathbf{x}},$$

суммирование по $\mathbf{n} \neq 0$ с компонентами $0 \leq |n_j| \leq N_p$.

 $a({\bf x})$ инвариантна относительно поворотов на $\pi/2, \, b({\bf x})$ антиинвариантна.

$$C_p(\omega_p) = A|\omega(0)|^{-1}\widetilde{C}_p, \qquad \widetilde{C}_p = (\sigma(a,a)A^2 + 3\sigma(a,b)B^2)(A^2 + B^2)^{-1}.$$

 $a_{\mathbf{n}}$ и $b_{\mathbf{n}}$ не зависят от A и $B \Rightarrow A|\omega(0)|^{-1} = |\sum_{\mathbf{n}} a_{\mathbf{n}}|^{-1}$ не зависит от A и B. $\max_{A,B} \widetilde{C}_p = \max(\sigma(a,a), 3\sigma(a,b))$, реализуемые при B = 0 или A = 0.

В первом случае глобальный $\max_{\mathbb{T}^2} |a(\mathbf{x})|$ остается в $\mathbf{x} = 0$:

$$|a(\mathbf{x})| \leq \frac{|Aa(\mathbf{x}) + Bb(\mathbf{x})| + |Aa(\mathbf{x}) - Bb(\mathbf{x})|}{2A} = \frac{|\omega(\mathbf{x})| + |\omega(\Re \mathbf{x})|}{2A} \leq \frac{|\omega(0)|}{A} = |a(0)|,$$

 $\Rightarrow C_p(\omega)$ не убывает при переходе от исходной $\omega(\mathbf{x})$ к $a(\mathbf{x})$, инвариантной относительно поворотов на $\pi/2$. Во втором – только оценка, т.к. при A=0 (i) $C_p(\omega_p)=0$, и (ii) $\mathbf{x}=0$ не есть точка глобального максимума $|\omega(\mathbf{x})|$, т.к. b(0)=0.

Задачи

- Ускорить БПФ для функций, инвариантных относительно поворотов на $\pi/2$.
- Ускорить вычисления, используя структуру подынтегрального выражения

$$\sigma = 2 \int_{\mathbb{T}^2} \left(\frac{\partial v_1}{\partial x_1} \left(\left(\frac{\partial \omega}{\partial x_2} \right)^2 - \left(\frac{\partial \omega}{\partial x_1} \right)^2 \right) - \left(\frac{\partial v_1}{\partial x_2} + \frac{\partial v_2}{\partial x_1} \right) \frac{\partial \omega}{\partial x_1} \frac{\partial \omega}{\partial x_2} \right) d\mathbf{x}.$$

- ullet Охарактеризовать конечные ряды Фурье ω_p , реализующие $\max_{\omega_p} C_p$:
- i. Они инвариантны относительно поворотов на $\pi/2$ вокруг одного из глобальных максимумов?
- ii. Они принимают обе величины $\pm \max_{\mathbb{T}^2} |\omega|$, причем каждое в нескольких точках?
- ііі. Какие-то еще специальные свойства?
- Вычислить C_p для $p \to \infty = 15$.
- \bullet Доказать (или опровергнуть) желаемое неравенство для σ , используя специальную структуру этой суммы.

