IV Всероссийская научная конференция «Современные методы оценки сейсмической опасности и прогноза землетрясений» (22-23 октября 2025 г. ИТПЗ РАН, Москва)

Отклик сейсмичности в очаговой зоне сильных землетрясений (М≥7) Северной Калифорнии на динамические и электромагнитные воздействия как возможный индикатор напряженно-деформированного состояния земной коры

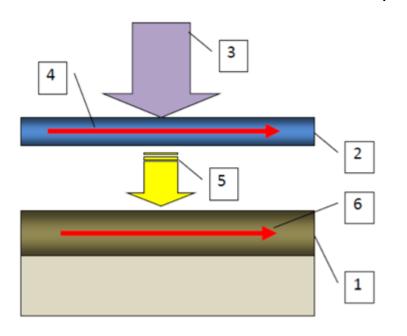
<u>Новиков В.А.^{1, 2}, Лазарева Е.А.³</u>

¹Объединенный институт высоких температур РАН,

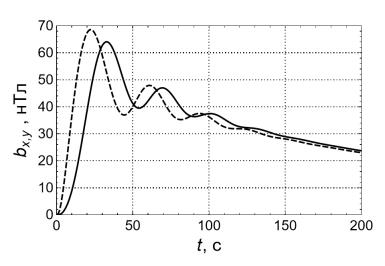
² Институт динамики геосфер РАН им. академика М.А. Садовского

³ Научная станция РАН в Бишкеке

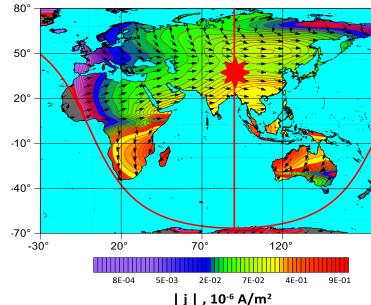
Исследования поддержаны грантом РНФ №24-27-00205



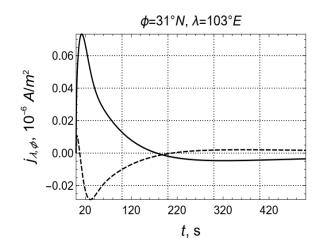
Теоретическая модель генерации теллурических токов рентгеновским излучением солнечных вспышек

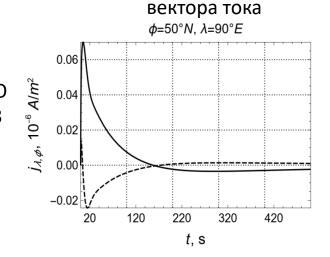

(Sorokin et al., Earthquake Science, 2019; Вестник ОИВТ РАН, 2019; Atmosphere, 2023; Динамические процессы в геосферах, 2023)

Рассмотрен механизм формирования колебаний геомагнитного поля в системе «Земля — ионосфера» с периодами (1 — 100) с в процессе ионизации ионосферы рентгеновским излучением солнечной вспышки с коротким фронтом нарастания ее амплитуды, а также генерации теллурических токов в литосфере с конечной проводимостью.

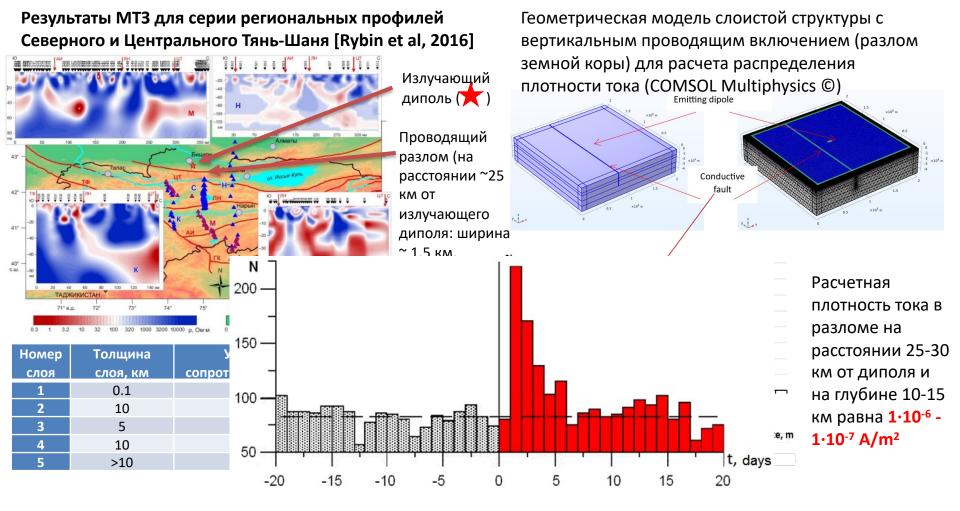


- 1 проводящий слой земной коры
- 2 проводящий слой ионосферы
- 3 рентгеновское излучение солнечной вспышки
- 4 электрическое поле в ионосфере
- 5 геомагнитные пульсации
- 6 теллурические токи в земной коре


Результаты численного эксперимента (продолжение)


Зависимость от времени компонент возмущения магнитного поля на поверхности Земли b_x (----) и b_y (____) для проводимости σ_g = 3 См/м

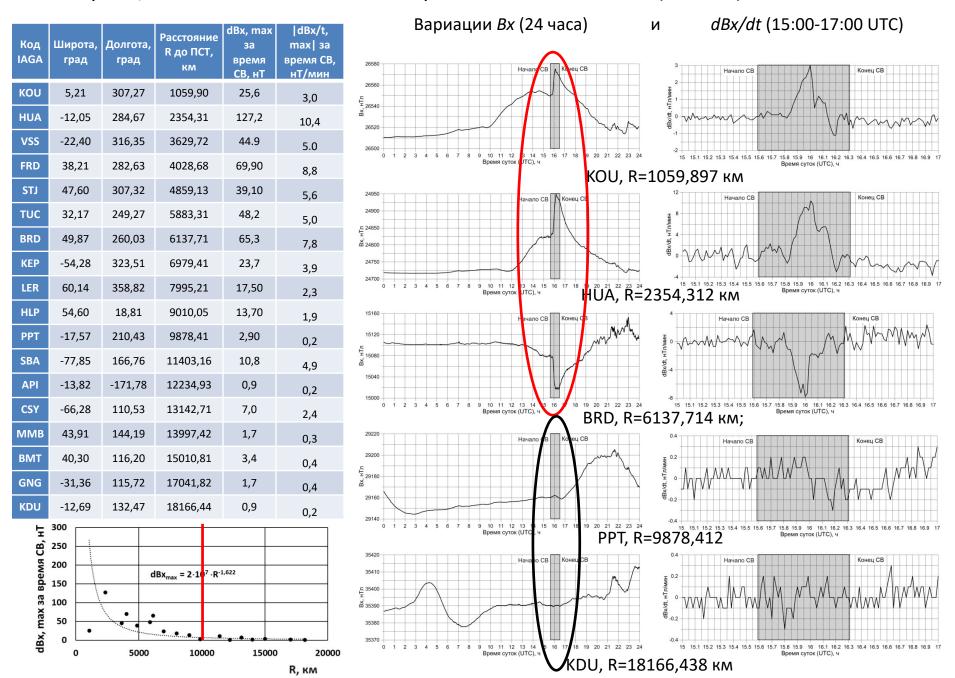
Пространственное распределение максимальной плотности тока и направлений



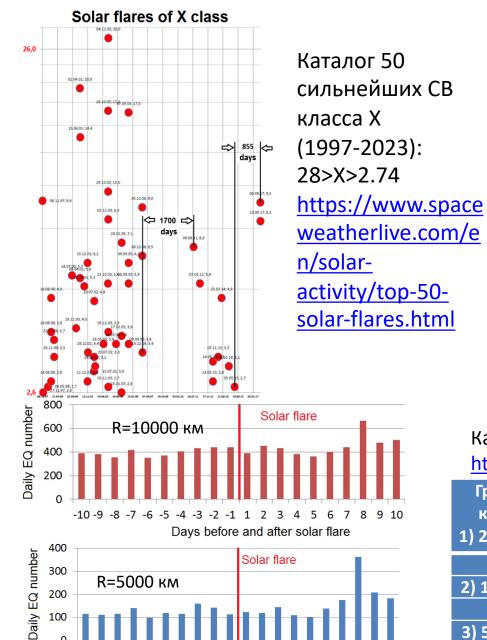
---- направление C-Ю - - - направление B-3

Временные зависимости плотности электрического тока для различных координат

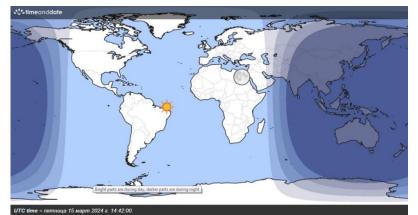
Плотность тока, генерируемая в земной коре искусственным источником

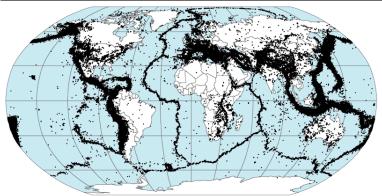

МГД-генератор:

 $10^{-6...-8} \text{ A/m}^2$


Солнечная вспышка:

 $10^{-6...-7} \text{ A/m}^2$


Вариации геомагнитного поля во время СВ класса Х11.88 (56 мин), 10.09.2017



Анализ влияния СВ класса X (макс. интенсивность излучения $> 10^{-4}$ BT/м²) на ЗТ

Days before and after solar flare

Каталог USGS (M≥4.5):

https://earthquake.usgs.gov/earthquakes/search/.

Группа СВ	$\Sigma_{R=}$	5000	$\Sigma_{R=10000}$		Σ_{nor}	ı-lit	
класса Х:	а	b	а	b	а	b	
1) 28 ≥X ≥2.74	1667	1209	4507	3977	4157	4163	
∆3T, %	37,	,88	13,	33	-0,1		
2) 10.0≥X≥5.0	456	767	1330	1546	1640	1590	
∆3T, %	68	3,2	16,	24	-3,05		
3) 5.0>X>2.74	640	794	2068	2365	1891	1796	
∆3T, %	24,	,06	14,	36	-5,02		

Эффективность воздействия электрического тока на инициирование 3Т (лабораторный эксперимент)

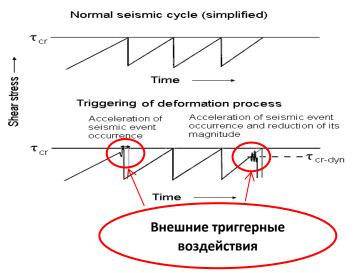
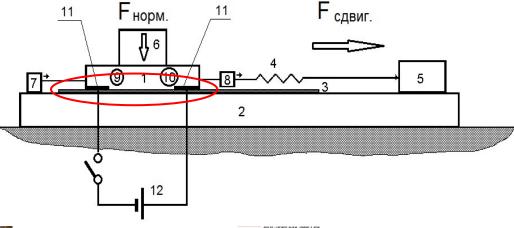
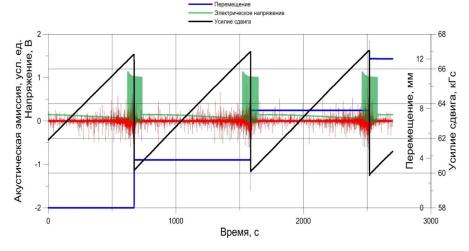
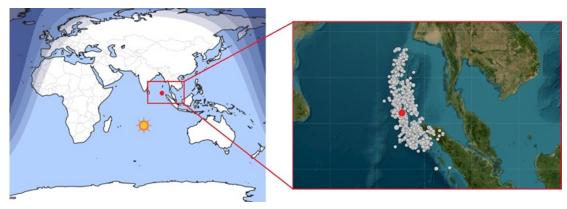
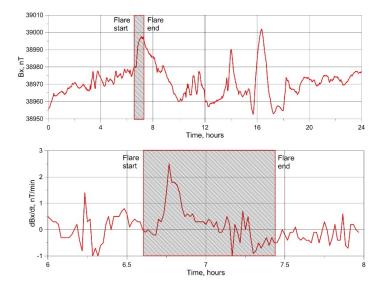




Схема электрического воздействия на контактную зону (модельный разлом земной коры) пружинно-блочной установки С-2

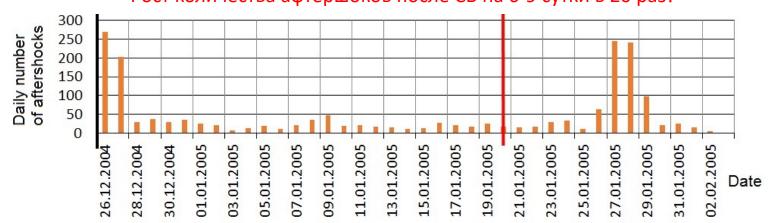


Пружинно-блочная модель разлома земной коры (слайдер С-2)

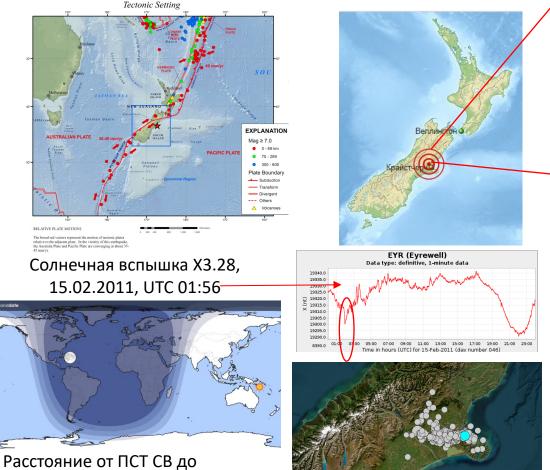


Инициирование лабораторного «землетрясения» импульсами постоянного электрического тока при Кр=0,98-0,99

Анализ влияния солнечной вспышки (X10.18, 20.01.2005) на афтершоковую зону Суматра-Андаманского землетрясения (M9.1, 26.12.2004)



Эпицентр (красная точка) и афтершоки (справа) Суматра-Андаманского ЗТ Расстояние от ПСТ СВ X10.18 до эпицентра ЗТ = 2717,6 км

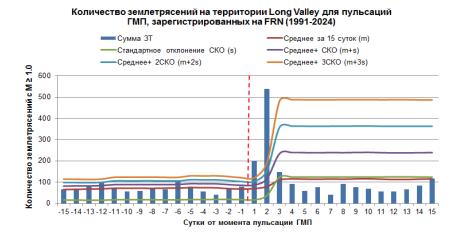


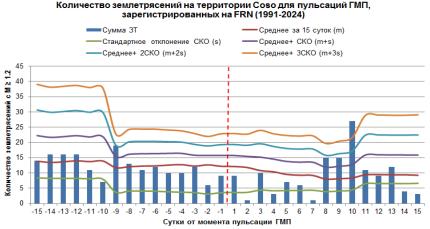
Афтершоковая последовательность (M≥2,5) Суматра-Андаманского землетрясения (черная вертикальная линия — момент 3Т; красная вертикальная линия — момент СВ)

Рост количества афтершоков после СВ на 6-9 сутки в 20 раз!

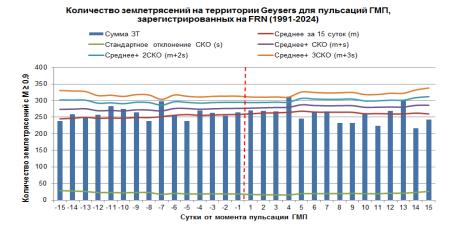
Воздействие солнечных вспышек на афтершоковую зону Дарфилдского землетрясения 03.09.2010, М7.0 (Новая Зеландия)

Афтершок Mw=6.2, 21.02.2011 с задержкой <u>6 суток</u> после CB


На этом же разломе с той же самой задержкой <u>6 суток</u> 13.06.2011 г. произошли еще два сильных афтершока M5.2 и M5.9 после более слабой CB класса M3.64 (07.06.2011).


эпицентра афтершока 3853,7 км

В соответствии с моделью [Sorokin et al., 2023] вектор плотности TT в земной коре имеет юго-восточное направление, которое совпадает с направлением простирания разлома Port Hills, на котором произошел афтершок M6.2. При этом плотность TT по численным оценкам имеет порядок 10-7 A/m^2 . Таким образом, разлом Port Hills являлся наиболее чувствительным местом к электромагнитному воздействию СВ с точки зрения его напряженно-деформированного состояния (афтершоковая зона Дарфилдского 3T), плотности TT (10^{-7} A/ M^2) и ориентации вектора плотности TT,


ориентации вектора плотности 11, совпадающей с направлением простирания разлома, что содействовало дополнительной концентрации тока в разломе.

Отклик микросейсмичности геотермальных полей Северной Калифорнии, США на сильные пульсации горизонтальной компоненты геомагнитного поля Вх |dBx/dt| ≥ 50 нТ/мин (результаты анализа) (Новиков, Лазарева, ДАН, 2025)

миграции флюида в разломную зону

поля, приводящую к инициированию землетрясений

Fn F_{load} 0.6 contact 0.5 injected into Отклик микросейсмичности геотермальных полей на 0.3 пульсации геомагнитного поля может указывать на 0.2 миграцию флюида под воздействием электромагнитного

At $\sigma/\sigma_{cr} = 0.8$ water injection does not trigger lab EQ 1% of water in relation to contact 0.1 zone volume riggers lab EQ 0.88 0.90 0.92 0.96 Relative level of shear stress in contact area σ/σοι

Экспериментальные исследования влияния

Spring load force = 0.972 of critical (fault failure) value

Fluid injection

0.5 g of water injected

Эффективность воздействия электрического тока на инициирование 3Т (лабораторный эксперимент)

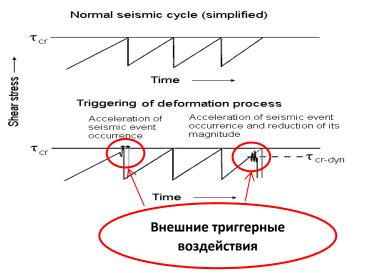
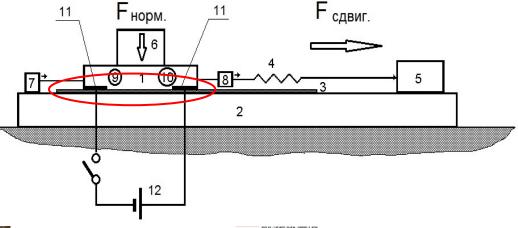
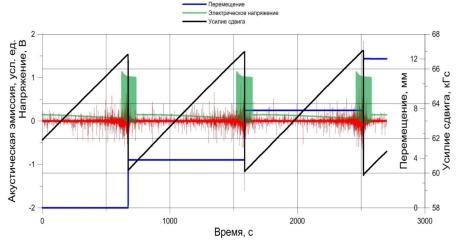
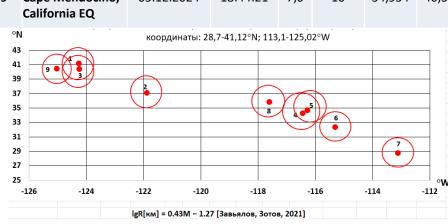
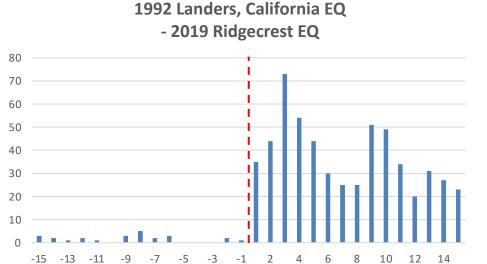




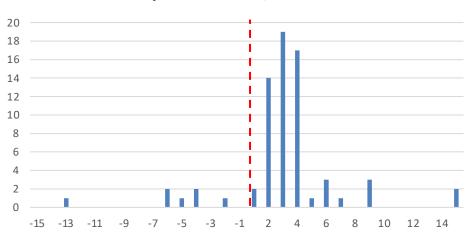
Схема электрического воздействия на контактную зону (модельный разлом земной коры) пружинно-блочной установки С-2


Пружинно-блочная модель разлома земной коры (слайдер С-2)

Инициирование лабораторного «землетрясения» импульсами постоянного электрического тока при Кр=0,98-0,99

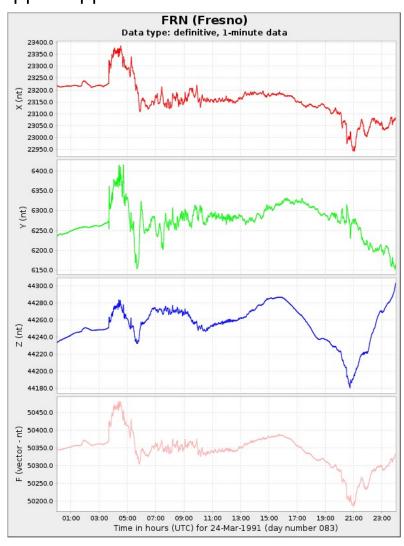
Отклик сейсмичности в очаговой зоне сильных землетрясений (M≥7) Северной Калифорнии на динамические воздействия удаленных землетрясений. Исходные данные


	Semile price in in the Administration																
									Расстояние между эпицентрами 3T, км и время между моментами возникновения 3T, годы							тами	
Nº	3 T	Дата	Время, UTC	M	Глуб, км	R, ĸm	Шир, LAT	Долг, LONG	1	2	3	4	5	6	7	8	9
1	1980 Eureka, California EQ	08.11.1980	10:27:34	7,2	19	66,988	41,117	-124,253	0,00	-8,95	-11,47	-11,64	-18,95	-29,42	-31,45	-38,68	-44,10
2	1989 Loma Prieta earthquake	18.10.1989	0:04:14	7,2	19	66,988	37,04	-121,88	497,41	0,00	-2,52	-2,70	-10,00	-20,47	-22,50	-29,73	-35,16
3	1992 Petrolia, California EQ	25.04.1992	18:06:05	7,2	9,9	66,988	40,335	-124,229	89,98	419,25	0,00	-0,18	-7,48	-17,95	-19,98	-27,21	-32,64
4	1992 Landers, California EQ	28.06.1992	11:57:34	7,3	-0,1	73,961	34,2	-116,437	1030,06	584,46	969,17	0,00	-7,30	-17,78	-19,80	-27,04	-32,46
5	1999 Hector Mine, California EQ	16.10.1999	9:46:44	7,1	13,7	60,674	34,603	-116,265	1007,29	574,07	948,05	47,51	0,00	-10,47	-12,50	-19,73	-25,16
6	2010 Sierra El Mayor, Mexico EQ	04.04.2010	22:40:42	7,2	10	66,988	32,286	-115,295	1264,20	800,95	1199,43	237,85	272,90	0,00	-2,02	-9,26	-14,68
7	2012 ENE of San Luis, Mexico	12.04.2012	7:15:48	7,0	13	54,954	28,696	-113,104	1602,49	1236,10	1644,44	688,74	721,65	450,99	0,00	-7,24	-12,66
8	2019 Ridgecrest EQ	06.07.2019	3:19:53	7,1	8	60,674	35,77	-117,599	829,74	408,27	770,73	204,16	177,58	441,73	829,72	0,00	-5,42
9	2024 Offshore Cape Mendocino, California EQ	05.12.2024	18:44:21	7,0	10	54,954	40,374	-125,022	104,99	460,11	67,34	1022,85	1003,4	1250,65	1693,1	826,70	0,00
°N координаты: 28,7-41,12°N; 113,1-125,02°W М Сильные землетрясения Северной Калифорнии (М≥7) 1980-2024																	
43 41								7,4 —		. 4		•		. ,			
39	(9 • () • ()							7,3 — — — 7,3 — — — — — — — — — — — — — — — — — — —	2 .	* 4				6			
37	'	(•)		V				7,2 *1		3				*			

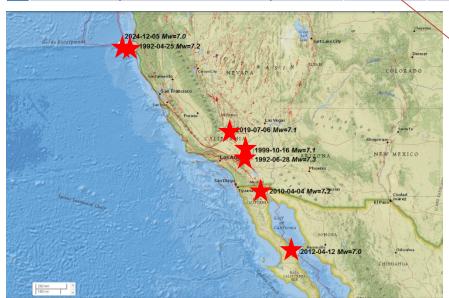


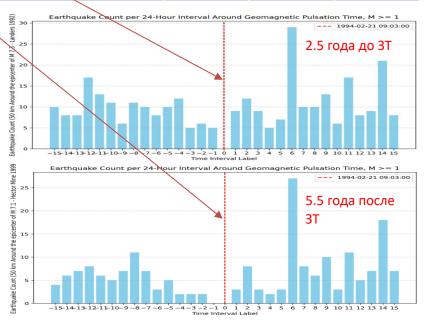
Отклик сейсмичности в очаговой зоне сильных землетрясений (M≥7) Северной Калифорнии на динамические воздействия удаленных землетрясений. Результат анализа

					Na/Nb = отношение количества 3T в течение 15 суток после воздействия к количеству 3T в течение 15 суток до воздействия							
Nº	3Т	Дата	Время, UTC	M	1	2	3	4	5	6	7	8
6	2010 Sierra El Mayor, Mexico EQ	04.04.2010	22:40:42	7,2	0,5	0,17	2,33	1,5	8,86			
8	2019 Ridgecrest EQ	06.07.2019	3:19:53	7,1	1,33	1,38	1,24	22,60	0,6	0,82	1,75	
9	2024 Offshore Cape Mendocino, California EQ	05.12.2024	18:44:21	7,0	-	1,0	-	1,0	2,0	4,0	0,0	3,0

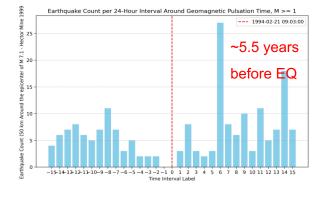


Отклик сейсмичности в очаговой зоне сильных землетрясений (M≥7) Северной Калифорнии на сильные вариации геомагнитного поля (обсерватория Fresno). Исходные данные

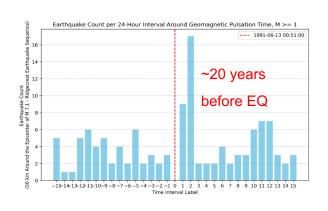

Nº	dBx/dt , нТл/мин	Дата, ГГ-ММ-ДД	Время, UTC	К _р
1	86.8	1991-03-24	03:42:00	8
2	59.8	1991-06-05	16:53:00	8
3	56.3	1991-06-13	00:51:00	7
4	63.7	1991-10-28	15:38:00	8
5	77.1	1994-02-21	09:03:00	7
6	63.8	1998-05-04	07:40:00	9
7	51.8	2000-05-24	00:15:00	8
8	50.2	2000-06-08	09:12:00	7
9	56.0	2000-07-15	17:04:00	9
10	63.3	2001-03-31	00:53:00	9
11	50.6	2001-04-13	10:44:00	7
12	59.9	2001-11-06	01:53:00	9
13	56.6	2001-11-24	05:57:00	8
14	60.4	2002-05-23	15:46:00	8
15	51.3	2003-05-30	00:12:00	7
16	50.7	2003-10-29	06:45:00	9
17	50.4	2003-10-30	19:59:00	9
18	63.2	2004-11-07	18:29:00	8
19	60.5	2004-11-09	18:51:00	9
20	51.1	2005-01-21	20:58:00	8
21	53.6	2005-09-11	05:38:00	8
22	53.8	2024-05-10	22:04:00	9
23	68.2	2024-05-11	01:31:00	9
24	62.3	2024-10-10	23:12:00	9

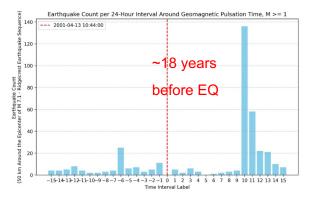


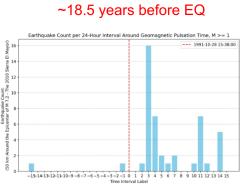
Для анализируемого периода 1991-2024 г.г. значения $Kp \ge 7$ наблюдались в течение 322 суток (данные Центра Гельмгольца, Потсдам, Германия), однако только в 24 случаях значение |dBx/dt| превышало 50 нTл/мин.

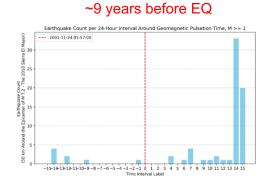

Отклик сейсмичности в очаговой зоне сильных землетрясений (M≥7) Северной Калифорнии на сильные вариации геомагнитного поля (обсерватория Fresno). Результаты анализа

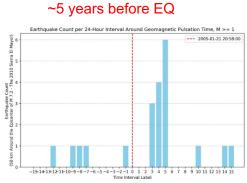

N	Earthquake	Date	Time, UTC	Magnitude	Depth, km	Latitude, °N	Longitude, °W
1	The 1992 Petrolia, California Earthquake	1992-04-25	18:06:05	7.2	9.9	40.335°N	124.229°W
2	The 1992 Landers, California Earthquake	1992-06-28	11:57:34	7.3	-0.1	34.200°N	116.437°W
3	The 1999 Hector Mine, California Earthquake	1999-10-16	09:46:44	7.1	13.7	34.603°N	116.265°W
4	The 2010 Sierra El Mayor, B.C., Mexico Earthquake	2010-04-04	22:40:42	7.2	10.0	32.286°N	115.295°W
5	69 km ENE of San Luis, Mexico	2012-04-12	07:15:48	7.0	13.0	28.696°N	113.104°W
6	Ridgecrest Earthquake Sequence	2019-07-06	03:19:53	7.1	8.0	35.770°N	117.599°W
7	2024 Offshore Cape Mendocino, California Earthquake	2024-12-05	18:44:21	7.0	10.0	40.374°N	125.022°W




Hector Mine Earthquake, M=7.1, 1999-10-16




Ridgecrest Earthquake Sequence, M=7.1, 2019-07-06



Sierra El Mayor, B.C., Mexico Earthquake, 2010-04-04, M7.2

Выводы

- 1) Динамические и электромагнитные воздействия на очаговые зоны сильных землетрясений (M>7) Северной Калифорнии приводят к росту их сейсмической активности до момента возникновения сильного землетрясения.
- 2) По аналогии с лабораторными экспериментами рост сейсмической активности после внешних воздействий может указывать на подготовку сильного сейсмического события.
- 3) В ряде случаев отмечается увеличение числа слабых землетрясений в очаговой зоне будущего сильного землетрясения после воздействий по мере приближения к моменту его возникновения, что может служить индикатором уровня напряженно-деформированного состояния очаговой зоны.
- 4) Тем не менее, для окончательного вывода о возможности использования триггерных динамических и электромагнитных воздействия как индикатора напряженно-деформированного состояния земной коры в очаговой зоне будущего сильного землетрясения необходим дополнительный анализ для более слабых воздействий (M<7, |dBx/dt| <50 нТл/мин) и для других регионов.

Спасибо за внимание!