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We give formulas for finding a compactly supported function v on
R, d > 1, from its Fourier transform Fv given within the ball B,.
For the one-dimensional case, these formulas are based on the
theory of prolate spheroidal wave functions. In multidimensions,
well-known results of the Radon transform theory reduce the
problem to the one-dimensional case.

We also present a numerical implementation of these results. In
particular, the results obtained give super-resolution
reconstruction, that is, they allow recovering details beyond the
diffraction limit, that is, details of size less than 7 /r, where r is the
radius of the ball mentioned above.

This talk is based on the works:

[IN] M. Isaev, R.G. Novikov, Reconstruction from the Fourier
transform on the ball via prolate spheroidal wave functions,
Journal de Mathématiques Pures et Appliquées 163 (July),
318-333 (2022)

[INS] M. Isaev, R.G. Novikov, G.V. Sabinin, Numerical
reconstruction from the Fourier transform on the ball using prolate
spheroidal wave functions, Inverse Problems 38(10), 105002 (2022)
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1. Basic problems
We consider the Fourier transform F defined by the formula

FIVI(p) = 0(p) = (zi)d /equv(q)dq, peR?, (1)

Rd

where v is a complex-valued test function on RY, d > 1.
Let B, :={q€RY: |q| < p}, p>0.

Problem 1. Find v € L?(RY), where suppv C B,, from ¥ = Fv
given on the ball B, (possibly with some noise), for fixed r,o > 0.

Problem 1 arises in different areas such as Fourier analysis,
linearized inverse scattering and image processing, and has been
extensively studied in the literature. Solving Problem 1 is
complicated considerably by the fact it is exponentially unstable,
for fixed r,o > 0. Nevertheless, there exist several techniques to
approach this problem theoretically and numerically; see, [IN],
[INS] and references therein.
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The conventional approach for solving Problem 1 is based on the
following approximation

¢~ e i= P (@) = [ Pw(pdp g€ Bl (2)
B,

where F~1 is the standard inverse Fourier transform and w is such
that w|g, coincides with the data of Problem 1 and w|gs\ g, = 0.

Formula (2) leads to a stable and accurate reconstruction for
sufficiently large r. However, it has well-known diffraction limit:
small details (especially less than 7/r) are blurred. A new
approach for super-resolution in comparison with the resolution of
(2) was recently developed in [IN], [INS].
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2. Preliminaries
For convenience, we consider the scaling of v with respect to the
size of its support:

vo(q) :=v(0q), qeR’ (3)

Note that supp v, C Bj.
Let
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The data in Problem 1 (for the case without noise) can be
presented as follows (see [IN]):

o(rx) = %FC Vo] (x)  ford=1, (5)

o(xt) = ()" for d > 2

W) = (=) FelRalwll()  ford>2,  (6)
where x € [-1,1], 0 € S9!, c=ro, v,(q) = v(oq),
the operators F. and Ry are defined by

1 .
.Fc[f](x)::/_le’cxyf(y)dy, xe[-1,1], (7)
Rold)= [ ula)da  yeR, (8)
q€R9,gb=y

where f is a test function on [~1,1] and u is a test function of RY,
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Recall that Ry[u] = R[u](-,0), where Ry is defined by (8) and R
is the classical Radon transform. In fact, presentation (6) follows
from the projection theorem of the Radon transform theory.

The operator F. defined by (7) is a variant of band-limited Fourier
transform. This operator is one of the key objects of the theory of
prolate spheroidal wave functions. In particular, the operator F
has the following singular value decomposition in L?([—1,1]):

Felfl(x Z/ﬁjcch / Yjc (v)f(y)dy, 9)
JEN

where (1 c)jen are the prolate spheroidal wave functions and the
eigenvalues {/1j c}jen satisfy

0 < |gjt1,el < |mje| forall j e N={0,1,2...}, (10)
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ﬁcJ ~1< | eN, |ujel 2 W}} < Fﬂ +1, (1)

where |-] and [-] denote the floor and the ceiling functions,
respectively, and | - | is the number of elements in a set,

pj,c decay superexponentially as j — oc. (12)
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The functions (1)) c)jen are certain of wave functions introduced by
Niven in 1880 for solving the Helmholtz equation in prolate
spheroidal coordinates. Originally, (¢ c)jen are defined as the
eigenfunctions of the spectral problem

% [(1 — x2)‘ﬁ:] + Y =y, ¢e C3([-1,1]).
The fact that (1 c)jen are the eigenfunctions of the finite Fourier
transform F. defined by (7) was pointed out by Slepian and Pollak
in 1961 as a special case of more general integral relations satisfied
by Niven's wave functions. As mentioned in [Slepian, Pollak, 1961]
"These functions ... possess properties that make them
ideally suited for the study of certain questions regarding
the relationship between functions and their Fourier trans-
forms.”
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3. Reconstruction formulas from [IN]

For d = 1: 5
vo = T F 0] (13)

where V,(x) = V(rx), x € [-1,1],

) =Y i) [ st (1)

JGN Hise

g is a test function from the range of F. acting on L2([-1,1]).

For d > 2:
2 d
vy = <:> RE ], (15)

f;’,a(y7 9) = F;l[\/)ryg](y), if ye [_17 1]7 and fr,o‘ = 0 otherwise 5

Vro(x) = 0(rx0),  xe[-1,1], o €S9
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For the case of noisy data in Problem 1, the operator .Fc_l is
approximated by the finite rank operator ]-',,‘é defined by

n

Fotlglly) =>_

_I:0 Js

1
L) [ e(edx.  (16)

c -1

The operator F, 1 is correctly defined on L?([—1,1]) for any

n € N. In addition, F, 1[g] is the quasi-solution in the sense of
Ivanov of the equation F.[f] = g € L?([-1,1]) on

the span of the first n 4 1 functions (1 c)j<n.

The rank n is a regularisation parameter.
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Numerical results / 1D case / Two stairs

12

Original Domain (n = 12, ¢ =10, 129 points)
Preimage L2 norm: A-P = 57.44%; NIF-P = 70.60%
Fourier Image L2norm: A-l = 0.00%; NIF-l = 4.55%

Original Domain (n = 16, ¢ =10, 2049 points)
Preimage L2 norm: A-P = 39.39%; NIF-P = 67.37%
Fourier Image L2norm: A-l = 0.00%; NIF-l = 4.55%
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similarity with NIF

Original Domain (n = 6, ¢ = 10, 129 points)
Preimage L2 norm: A-P = 70.46%; NIF-P = 70.60%
Fourier Image L2norm: A-l = 2.50%; NIF-l = 4.55%
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Numerical results / 1D case / Three stairs

Original Domain (n =12, ¢ = 10, 129 points) Original Domain (n = 18, ¢ =10, 2049 points)
Preimage L2 norm: A-P = 60.19%; NIF-P = 68.56% Preimage L2 norm: A-P = 34.82%; NIF-P = 66.90%
Fourier Image L2norm: A-l = 0.00%; NIF-l = 2.47% Fourier Image L2norm: A-l = 0.00%; NIF-l = 2.47%

2 |—— Approximation 2
—Naive Inverse Fourier
—Preimage

- .
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|
Numerical results / 1D case / Sin(12x) and sin(15x)

Original Domain (n =12, ¢ = 10, 129 points) Original Domain (n = 15, ¢ = 10, 2049 points)
Preimage L2 norm: A-P = 4.18%; NIF-P = 93.32% Preimage L2 norm: A-P = 3.46%; NIF-P = 97.79%
Fourier Image L2norm: A-l = 0.02%; NIF-I = 82.81% Fourier Image L2norm: A-I = 0.00%; NIF-I = 80.11%
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Numerical results / 2D case / Three stairs

Approximation (n = 10, ¢ = 10) Naive Inverse Fourier
Preimage L2 norm: A-P = 48.79% L2 norm: NIF-P = 60.17%
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Numerical results / 2D case / Three stairs (cross-sections)

Original Domain (n = 10, ¢ = 10), Vertical CS (90 degrees)
CS L2 norm: A-P = 62.89%, NIF-P = 92.29%
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Original Domain (n = 10, ¢ = 10), Vertical CS (0 degrees)
CS L2 norm: A-P = 39.55%, NIF-P = 48.81%

IARYA
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Numerical results / 2D case / Three stairs (21% of £ noise)

Approximation (n =8, ¢ = 10) Naive Inverse Fourier
Preimage L2 norm: A-P = 55.48% L2 norm: NIF-P = 60.19%
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Summary

@ In spite of the exponential instability of the problem, we achieved
super-resolution even for noisy data by appropriate choice of the
regularisation parameter n. In particular, for d > 2, the approach
works well even for a considerable level of random noise.

@ Our reconstruction (with appropriate choice of n) gives smaller errors
in £2-norm (in both Fourier domain and spatial domain) than the
conventional reconstruction.

7
conventional reconstruction. In our examples, taking n larger than ng

gives better results.

. . 2c .
@ Our reconstruction with n = ng := {J behaves similarly to the

We expect that similar numerical behaviour (in particular,
super-resolution) is also possible for monochromatic inverse scattering and
for other generalisations of the considered problem.
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