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We give formulas for finding a compactly supported function v on
Rd , d ≥ 1, from its Fourier transform Fv given within the ball Br .
For the one-dimensional case, these formulas are based on the
theory of prolate spheroidal wave functions. In multidimensions,
well-known results of the Radon transform theory reduce the
problem to the one-dimensional case.
We also present a numerical implementation of these results. In
particular, the results obtained give super-resolution
reconstruction, that is, they allow recovering details beyond the
diffraction limit, that is, details of size less than π/r , where r is the
radius of the ball mentioned above.
This talk is based on the works:

[IN] M. Isaev, R.G. Novikov, Reconstruction from the Fourier
transform on the ball via prolate spheroidal wave functions,
Journal de Mathématiques Pures et Appliquées 163 (July),
318-333 (2022)
[INS] M. Isaev, R.G. Novikov, G.V. Sabinin, Numerical
reconstruction from the Fourier transform on the ball using prolate
spheroidal wave functions, Inverse Problems 38(10), 105002 (2022)
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1. Basic problems
We consider the Fourier transform F defined by the formula

F [v ](p) = v̂(p) :=
1

(2π)d

∫
Rd

e ipqv(q)dq, p ∈ Rd , (1)

where v is a complex-valued test function on Rd , d ≥ 1.
Let Bρ :=

{
q ∈ Rd : |q| < ρ

}
, ρ > 0.

Problem 1. Find v ∈ L2(Rd), where supp v ⊂ Bσ, from v̂ = Fv
given on the ball Br (possibly with some noise), for fixed r , σ > 0.

Problem 1 arises in different areas such as Fourier analysis,
linearized inverse scattering and image processing, and has been
extensively studied in the literature. Solving Problem 1 is
complicated considerably by the fact it is exponentially unstable,
for fixed r , σ > 0. Nevertheless, there exist several techniques to
approach this problem theoretically and numerically; see, [IN],
[INS] and references therein.

3 / 12



The conventional approach for solving Problem 1 is based on the
following approximation

v ≈ vnaive := F−1 [w ] (q) =

∫
Br

e−ipqw(p)dp q ∈ Bσ, (2)

where F−1 is the standard inverse Fourier transform and w is such
that w |Br coincides with the data of Problem 1 and w |Rd\Br

≡ 0.

Formula (2) leads to a stable and accurate reconstruction for
sufficiently large r . However, it has well-known diffraction limit:
small details (especially less than π/r) are blurred. A new
approach for super-resolution in comparison with the resolution of
(2) was recently developed in [IN], [INS].
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2. Preliminaries
For convenience, we consider the scaling of v with respect to the
size of its support:

vσ(q) := v(σq), q ∈ Rd . (3)

Note that supp vσ ⊂ B1.
Let

c := rσ (4).
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The data in Problem 1 (for the case without noise) can be
presented as follows (see [IN]):

v̂(rx) =
σ

2π
Fc [vσ] (x) for d = 1, (5)

v̂(rxθ) =
( σ

2π

)d
Fc [Rθ[vσ]] (x) for d ≥ 2, (6)

where x ∈ [−1, 1], θ ∈ Sd−1, c = rσ, vσ(q) = v(σq),
the operators Fc and Rθ are defined by

Fc [f ](x) :=

∫ 1

−1
e icxy f (y)dy , x ∈ [−1, 1], (7)

Rθ[u](y) :=

∫
q∈Rd ,qθ=y

u(q)dq, y ∈ R, (8)

where f is a test function on [−1, 1] and u is a test function of Rd .
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Recall that Rθ[u] ≡ R[u](·, θ), where Rθ is defined by (8) and R
is the classical Radon transform. In fact, presentation (6) follows
from the projection theorem of the Radon transform theory.

The operator Fc defined by (7) is a variant of band-limited Fourier
transform. This operator is one of the key objects of the theory of
prolate spheroidal wave functions. In particular, the operator Fc

has the following singular value decomposition in L2([−1, 1]):

Fc [f ](x) =
∑
j∈N

µj ,cψj ,c(x)

∫ 1

−1
ψj ,c(y)f (y)dy , (9)

where (ψj ,c)j∈N are the prolate spheroidal wave functions and the
eigenvalues {µj ,c}j∈N satisfy

0 < |µj+1,c | < |µj ,c | for all j ∈ N = {0, 1, 2 . . .}, (10)
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⌊
2c

π

⌋
− 1 ≤

∣∣∣{j ∈ N, |µj ,c | ≥
√
π/c}

∣∣∣ ≤ ⌈2c

π

⌉
+ 1, (11)

where b·c and d·e denote the floor and the ceiling functions,
respectively, and | · | is the number of elements in a set,

µj ,c decay superexponentially as j →∞. (12)
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The functions (ψj ,c)j∈N are certain of wave functions introduced by
Niven in 1880 for solving the Helmholtz equation in prolate
spheroidal coordinates. Originally, (ψj ,c)j∈N are defined as the
eigenfunctions of the spectral problem

d

dx

[
(1− x2)

dψ

dx

]
+ c2x2ψ = χψ, ψ ∈ C 2([−1, 1]).

The fact that (ψj ,c)j∈N are the eigenfunctions of the finite Fourier
transform Fc defined by (7) was pointed out by Slepian and Pollak
in 1961 as a special case of more general integral relations satisfied
by Niven’s wave functions. As mentioned in [Slepian, Pollak, 1961]

”These functions ... possess properties that make them
ideally suited for the study of certain questions regarding
the relationship between functions and their Fourier trans-
forms.”
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3. Reconstruction formulas from [IN]
For d = 1:

vσ =
2π

σ
F−1c [v̂r ], (13)

where v̂r (x) = v̂(rx), x ∈ [−1, 1],

F−1c [g ](y) =
∑
j∈N

1

µj ,c
ψj ,c(y)

∫ 1

−1
ψj ,c(x)g(x)dx , (14)

g is a test function from the range of Fc acting on L2([−1, 1]).
For d ≥ 2:

vσ =

(
2π

σ

)d

R−1[fr ,σ], (15)

fr ,σ(y , θ) = F−1c [v̂r ,θ](y), if y ∈ [−1, 1], and fr ,σ = 0 otherwise ,

v̂r ,θ(x) = v̂(rxθ), x ∈ [−1, 1], θ ∈ Sd−1.
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For the case of noisy data in Problem 1, the operator F−1c is
approximated by the finite rank operator F−1n,c defined by

F−1n,c [g ](y) :=
n∑

j=0

1

µj ,c
ψj ,c(y)

∫ 1

−1
ψj ,c(x)g(x)dx . (16)

The operator F−1n,c is correctly defined on L2([−1, 1]) for any
n ∈ N. In addition, F−1n,c [g ] is the quasi-solution in the sense of
Ivanov of the equation Fc [f ] = g ∈ L2([−1, 1]) on
the span of the first n + 1 functions (ψj ,c)j≤n.
The rank n is a regularisation parameter.
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Numerical results / 1D case / Two stairs
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n = n0 :=

⌊
2c

π

⌋
: similarity with NIF
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Numerical results / 1D case / Three stairs
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Numerical results / 1D case / Sin(12x) and sin(15x)
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Numerical results / 2D case / Three stairs
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Numerical results / 2D case / Three stairs (cross-sections)
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Numerical results / 2D case / Three stairs (21% of L2 noise)
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Summary

In spite of the exponential instability of the problem, we achieved
super-resolution even for noisy data by appropriate choice of the
regularisation parameter n. In particular, for d ≥ 2, the approach
works well even for a considerable level of random noise.

Our reconstruction (with appropriate choice of n) gives smaller errors
in L2-norm (in both Fourier domain and spatial domain) than the
conventional reconstruction.

Our reconstruction with n = n0 :=

⌊
2c

π

⌋
behaves similarly to the

conventional reconstruction. In our examples, taking n larger than n0
gives better results.

We expect that similar numerical behaviour (in particular,
super-resolution) is also possible for monochromatic inverse scattering and
for other generalisations of the considered problem.
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