ПРОДУКТИВНОСТЬ В РАМКАХ ETAS МОДЕЛИ Г.МОЛЧАН

"Закон продуктивности землетрясений опровергает общепринятые до сих пор модели сейсмичности в виде ветвящихся стохастических процессов, но дает четкий и простой путь для исправления таких моделей"

[К 30-летию ИТПЗ РАН, стр. 11, 2019]

ЗАКОНЫ продуктивности

продуктивность события m_0 : число инициированных им событий $\nu_{\scriptscriptstyle \Delta}(m_0)-$ # {прямые потомки $m\geq m_0-\Delta$ } - Δ полная Δ продуктивность $V_{\scriptscriptstyle \Delta}(m_0)-$ # { все потомки $m\geq m_0-\Delta$ } полная Δ продуктивность

- I. (Shebalin et al., Geophys. J. Int, 222, 2020) $P(v_{\Delta} = n) = p^{n}(1-p) \text{ (Geometric distribution)}$
- II. (Шебалин и др. ДАН 481:3 2018) $P(V_{\scriptscriptstyle \Delta} = n \big| m_{\scriptscriptstyle 0} \text{ гл.событие} \rangle) = p^n (1-p)$

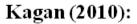
Наблюдения: $V_{\Delta}(m_0$ -главное событие)

С.Соловьев & О.Соловьева (1962)-

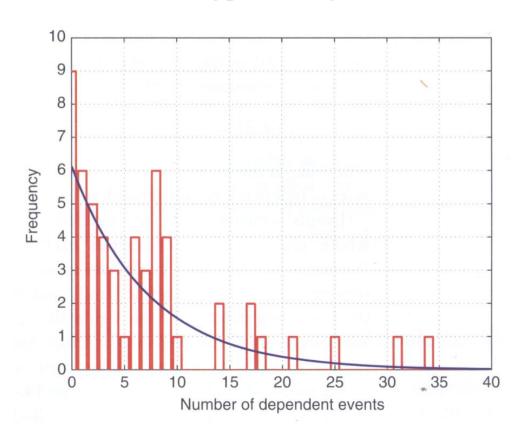
G-распределение

T=1954-1961 Pacific Belt $(m_0 \approx 7; \Delta = 2)$

Камчатка-Курилы $(m_0 \approx 6; \Delta = 2)$.

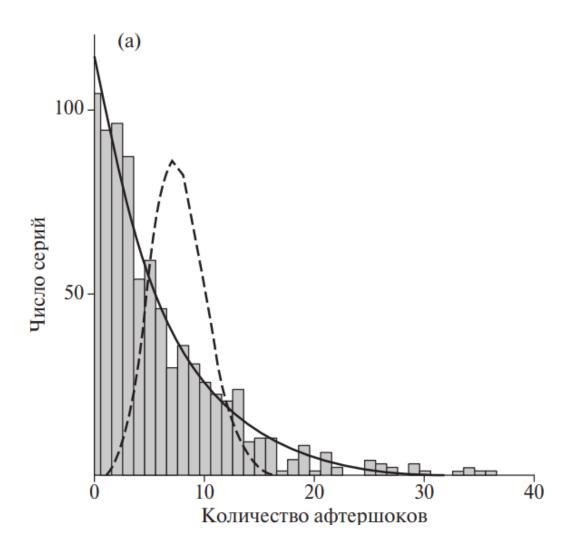


PDE (1977-2007), $m_o = 7.1 - 7.2$ - бимодальное распределение



Shebalin et al. (2018):

ANSS (1975-2018) $m_0 \ge 6.5, \Delta = 2$ G-распределение



Наблюдения: ν_{Δ} (m_0 - любое событие)

Shebalin et al Geophys. J. Int, 222, 2020

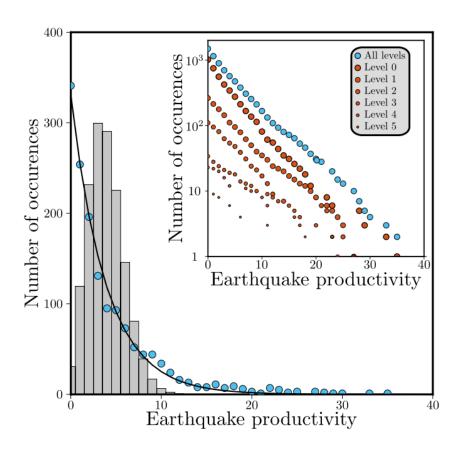
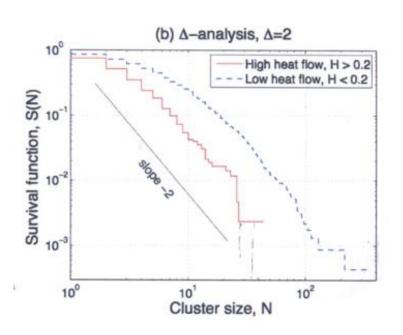


Figure 1. Earthquake productivity in the worldwide catalogue. Dots show the distribution of the number of triggered events for $M \ge 6.5$ earthquakes using a relative magnitude threshold $\Delta M = 2$. The solid line is the exponential law with parameter Λ_2 , the mean number of triggered events derived from the data. The histogram shows the Poisson distribution with parameter Λ_2 . Inset shows the cumulative productivity distributions for primary and secondary triggering events.

Наблюдения: $V_{\Delta}(m_0$ -любое событие)

Zaliapin, BenZion, 2016



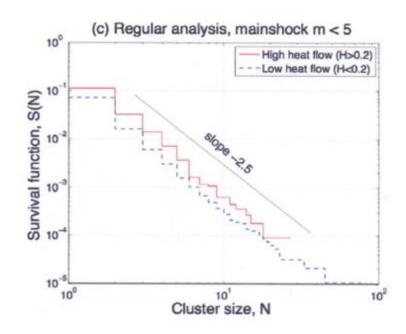


Figure 8: Distribution of cluster size N in regions with high (H > 0.2), red solid line) and low (H < 0.2), blue dashed line) values of heat flow. For families, the heat flow value is estimated at the mainshock epicenter. The y-axis shows the survival function S(N) = Prob.[cluster size > N]. The lines that correspond to power laws $S(N) \propto N^{-\alpha}$ with indices $\alpha = 1$ and $\alpha = 2$ are shown for visual convenience. (a) Regular analysis, all clusters. (b) Delta analysis with $\Delta = 2$. (c) Regular analysis, clusters with mainshock magnitude m < 5.

ЗАДАЧА

Дано:

- 1) $v_{\Lambda}(m_0)$ G распределение (Пуассон в ETAS модели)
- 2) сильное различие распределений $V_{\scriptscriptstyle \Delta}(m_{\scriptscriptstyle 0})$ $_{\it для}$ произвольных и доминирующих событий

Цель:

- -расширить класс ETAS моделей
- -понять (2) на моделях ETAS

ETAS модель

Поле случайных событий x = (t, g, m)

Традиционное определение через условную интенсивность

$$\lambda(x | \cup x_i : t(x_i) < t(x)) = \mu(g(x)) f_1(m(x)) + \sum_i \lambda(m(x_i)) p(x | x_i)$$
$$p(x | x_0) = f_1(m) f_2(t - t_0) f_3[(g - g_0) | m_0]$$

$$\lambda(m) = \lambda e^{\alpha \cdot m}, m \ge 0$$

-копия закона Утсу для афтершоков

$$f_1(m) = \beta \exp(-\beta m)$$
, $m \ge 0$; $\beta > \alpha$ - закон Гутенберга-Рихтера

$$f_2(t) = (p-1)(t/c+1)^{-p}/c$$

- *копия* закона Омори для афтершоков

NB. Распределение F прямых потомков скрыто в определении и поэтому вопрос о его виде не ставился

ETAS (F):

начальное событие

 $\{(t,g,m)_1 \quad (t,g,m)_2 \quad \dots \quad (t,g,m)_{\nu(m_0)}\} \quad \textbf{(A)}$

 $x_0 = (t_0, g_0, m_0)$

1-ое поколение

последующие поколения

аналогичны in law и независимы

$$P(\nu(m) \le n) = F(n)$$
 $E \nu(m) = \lambda(m)$

При фиксированном $v(m_0)$ события (A) независимы и распределены согласно:

$$p(x|x_0) = f_1(m)f_2(t - t_0)f_3[(g - g_0).|m]$$

 $E\lambda(m) < 1$ - условие конечности кластера

Свойства ETAS (F)

1. ETAS (F = P) = ETAS

(Р-Пуассон)

2. F=P или G \Rightarrow тип распределений $\nu(m_{_0})$ и $\nu_{_\Delta}(m_{_0})$ одинаков +

$$\lambda_{\Delta}(m_0) = \lambda(m_0)\overline{F}_1(m_0 - \Delta)/\overline{F}_1(\Delta) \qquad F_1(x) = \int_0^x f_1(u)du$$
 (1)

$$\lambda_{\Delta}(m_0) = \lambda e^{2\beta\Delta} e^{-(\beta-\alpha)m_0}\Big|_{\alpha=\beta} = \lambda e^{2\beta\Delta}$$
 He sabucut ot $m_0 \Leftrightarrow \alpha=\beta$

- \Rightarrow ETAS (G) сохраняет закон Утсу и G-распределение для $\nu_{\vartriangle}(m_0)$
- 3. ETAS $(G_{, m}\lambda(m) = \Lambda) = ETAS^*$:
 - нет закона Утсу
 - _ $\lambda_{\Delta}(m_0) = \Lambda \overline{F}_1(m_0 \Delta) / \overline{F}_1(\Delta)$ зависит от \mathbf{m} $\forall \beta$

ОСНОВНОЙ РЕЗУЛЬТАТ

ETAS: F=Р или G;...
$$f_1(m), f_2(t), f_3(g|m)$$
-любые $0 < \lambda(m) < \infty$ неубывающая функция, $E\lambda(m) < 1$

а) для фиксированной/случайной начальной магнитуды

 $V_{\scriptscriptstyle \Delta}$ и $\lambda(m)$ имеют одинаковое число конечных моментов

$$\mathcal{N}(V_{\Delta}) = \mathcal{N}(\lambda)$$

- **b)** для основного толчка $\mathcal{N}(V_{\Delta}) = \infty$
 - -если m_0 фиксировано
 - если m_0 случайно $+\lambda(m)\int_0^{\Delta} f_1(m-x)dx \le C$
- c) m_0 основной толчок в ETAS (G) кластере и $f_1(m) > 0 \Rightarrow$

 $V_{\scriptscriptstyle \Delta}(m_{\scriptscriptstyle 0})$ не может иметь геометрическое распределение для любого $\Delta \in$

$$(0,m_0)\setminus\Delta_0$$

СЛЕДСТВИЯ

1.В моделях ETAS (P/G) с законами Utsu и GR ($\alpha < .\beta$)

$$\mathcal{N}(\lambda) \le \alpha / \beta \quad \mathbf{H} \quad \lambda(m) \int_0^{\Delta} f_1(m-x) dx \le C$$

 $\Rightarrow V_{\Delta}$ имеет легкий хвост для афтершоков и тяжелый в общем случае (как в реальных данных!)

- 2.ETAS(G, α = 0) =ETAS* ⇒ V_{Δ} имеет только легкие хвосты
- 3. G-законы для $\nu_{\scriptscriptstyle \Delta}$ и $V_{\scriptscriptstyle \Delta}$ несовместимы в одной ETAS модели

Почему хвосты легкие для афтершоков?

Основной толчок ϕ иксированной магнитуды m сужает диапазон магнитуд до конечных размеров, где $\lambda(m)$ имеет все моменты. Если m случайно, утверждение нетривиально.

Master equation

1) Произвольное начальное событие

$$N_{M}(m_{0}) =_{law} \sum_{1}^{\nu(m_{0})} \{N_{M}(m_{i}) + [m_{i} \geq M]\}$$
 $N_{M}(m_{0})$ =число событий $m \geq M$ в кластере с началом m_{0} $\{m_{i}, i = 1, ..., \nu(m_{0})\}$ события первой генерации $N_{M}(m_{i})$ независимы при фиксированном $\nu(m_{0})$ $V_{\Delta}(m) = N_{m-\Delta}(m)$, $m \geq \Delta$.

2) ETAS(P/G) кластер для основного толчка = ETAS(P/G) кластер с новыми характеристиками

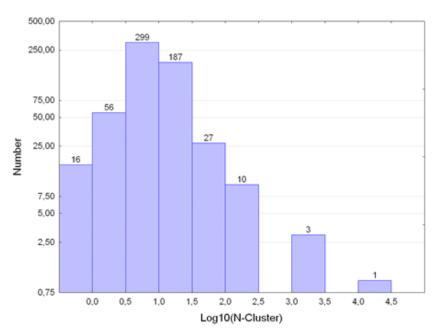
$$f_1(\mathbf{m}) \Rightarrow f_1(m)/F_1(m_0), 0 \le m \le m_0$$

$$\lambda(m) \Rightarrow \lambda(m)F_1(m_0) \begin{cases} 1, & F = P \\ (1 + \lambda(m)\overline{F_1}(m_0))^{-1}, & F = G \end{cases}$$

3)
$$\xi \sim G \Rightarrow E\xi(\xi-1)/(E\xi)^2 = 2$$

Численный пример

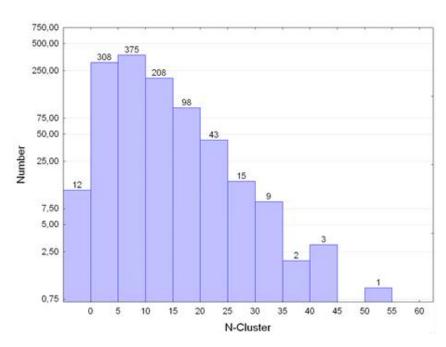
ETAS (P), Frili-region, $T=500 \text{ nem}, m_0 \ge 4, \Delta = 2$



(a) m₀-любое

$$N = 608 \ EV_{\Delta} = 40.0 \ \sigma(V_{\Delta}) = 432.8$$

$$\sigma(V_{\Delta})/EV_{\Delta} = 10.8 \quad \text{max } V_{\Delta} = 10084$$



b) m_0 -основное событие

$$N = 1074 \ EV_{\Delta} = 9.6 \ \sigma(V_{\Delta}) = 6.7$$

$$\sigma(V_{\Delta})/EV_{\Delta} \approx 0.7 \quad \text{max} V_{\Delta} = 54$$

Обсуждение

Трудности обоснования законов продуктивности:

-Декластеризация 40% событий ассоциируются с чужими родителями (Zaliapin & Ben-Zion ,2013)

-Эффект осреднения Усреднение экспоненциальных распределений сохраняет монотонность, но не сохраняет тип

- $\mathit{бимодальность}$ в примере Кагана для $V_{\scriptscriptstyle \Delta}$

-несовместность G-законов для V_{Δ} и V_{Δ} в одной ETAS модели

Слабый вариант закона продуктивности V_{Δ} Легкие хвосты для афтершоков и тяжелые для произвольных кластеров. (Тип распределении ν не важен)

Bonpoc: V_{\triangle} распределение для кластеров с малым тепловым потоком по данным Zaliapin, BenZion, 2016