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RAYLEIGH WAVES WITHOUT CUBIC EQUATIONS
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One of the major contributions of Volodya Keilis-Borok has been the founding and overseeing
of the publication of Computational Seismology. This journal has been an important resource
for solutions to difficult mathematical and computational problems in seismicity and seismic wave
propagation.
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OuH u3 rIaBHBIX BKAag0oB Bogoau Kenmuc-Jopoka — 2To oCHOBaHME €XKerogHoro cbopunka Bbi-
YUCAUMEALHAA CEUCMOAOLUA I PYKOBOACTBO €r0 M3MAHWEM. OJTOT COOPHUK MOCTYKUIT BaXKHBIM
PECYPCOM B DEIIEHUN TPYAHBIX MATEMATHIECKUX U BHIYUCAUTEAbHBIX 3a0a9 CEUCMUIHOCTH U Pac-
MPOCTPAHEHUS CEMCMUYECKUX BOJH

The physics of seismology forms the basis for any mathematical formulation of a computational
problem. There are two motivations for the introduction of deeper physics than the most superficial
statements into computational seismology. In one case, the physics that is used in the mathematical
constructions may be so simple, that it leads to models that may have fit only part of the complete
suite of geophysical observations. In this case one might wish to use more sophisticated physics to con-
strict an unmanageable manifold of models in the hope that extrapolations from appropriate models
can be better used in a predictive sense. As an example we cite recent interest in the understanding
of the processes that lead to the Gutenberg-Richter (GR) frequency-moment or frequency-energy
scale-independent relation for regional earthquake occurrence. Any scale-independent model will
yield scale-independent distributions such as the GR law. Of course one can restrict the models
by the use of data with greater numbers of degrees of freedom, i.e. to search for deviations from
scale-independent behavior. One can also restrict the class of scale-independent models to give the
appropriate b-value, or to account for broad-band seismographic observations. On the physics side,
one might improve models of fracture by introducing dynamics into these simulations, or by intro-
ducing inhomogeneities into the description of faulting. A second motivation for considering physics
in the computational process, is to provide understanding to discoveries that are cloaked in either
phenomenology or mathematics. I can summarize this class of problems by suggesting that there is
an innate curiosity on the part of most scientists to ask why or how certain observations in mathe-
matical theory or in correlation studies arise. As an example of the phenomenological or correlation
genre, we might ask why large earthquakes cluster in space and in time. The issues of understanding
of physical underpinnings are self-indulgent exercises without immediate consequences on the practi-
calities of computation. A focus on the “why or how” problem is an issue of pedagogy rather than one
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of practicality. In this paper I give an example of the search for a physical basis for a mathematical
problem in seismology. I seek to explore the logical space between the formulation and the numerical
results of a problem in the study of Rayleigh waves.

The beginning student of seismology often asks about the physical nature of Rayleigh waves on a
half-space. The professorial response to the physics question is usually a mathematical one, which
is of course the answer to a different question: for example, it is replied that the Rayleigh wave
on a homogeneous half-space is the solution to an eigenvalue equation, with an eigenvalue that is
one root of a cubic equation; or there is a response in terms of the reflection at complex angles of
plane P- and S-waves that are incident on the surface. The student questions why a direct physical
explanation in terms of the deformation of an elastic body is not possible, in direct contrast to the
immediacy and transparency with which compression waves and shear waves can be understood in
terms of a transparent physical picture of the deformation of elastic materials under stress. Why
must the nature of a Rayleigh wave be obscured in abstract mathematical manipulations? Is there
no simple explanation in terms of the physics of such a fundamental wave property, in analogy with
that for compression and shear?

In this note, I offer a simple physical explanation for the phenomenon of Rayleigh waves on a
homogeneous half-space. | show without difficult mathematics that the motions will be retrograde
elliptical on the surface for sinusoidal time dependence of the Rayleigh wave motions and prograde
elliptical at depth. Since this will be a qualitative theory, it will be impossible to derive the phase
velocity of Rayleigh waves precisely, but I show that the phase velocity is less than the S-wave velocity.

Consider an elastic half-space deformed by horizontal displacements at the surface as illustrated
in Fig.1. To the left of point A, the surface is displaced uniformly to the right, while to the right
of point B, the surface is displaced equally uniformly to the left. Since there is no compression or
extension of the undeformed regions at the far left and right, there is of course no vertical component
of the displacement in these regions. A vertical displacement of the surface in the central region is
associated with the gradient of the horizontal component of the displacement.

We solve for the sign of the vertical component of the displacement in the transitional interval
between the two undeformed regions. Consider the point X at the surface of the half-space (Fig.1).
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Fig. 1. Elastic half-space deformed by horizontal dis-
placements at the surface.

a) Horizontal displacements applied at the surface
of an elastic half-space. The displacements are pos-
itive and uniform to the left of A and negative and
uniform to the right of B; b) us(z) at z=0. ¢) u-(z)
at z=20

Fig. 2. Deformation of an element of area at point X
(see Fig. 1) in the surface of the half-space, under a
condition of vanishing shear stress.

a) Deformation has a negative vertical gradient of
uy and an equal positive horizontal gradient of u..
These can be decomposed into a translation and a
rotation; b) vectorial decomposition as in a); ¢) total
motion of element showing depression and rotation of
surface line element AB
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The displacements of the elastic medium resulting from the deformation of the surface must decrease
with increasing depth, and vanish at infinite depth. Thus u; ., < 0. (I use the comma notation for
partial derivatives, wu, , = Ou,/0u., etc.) Since the boundary condition at the surface is 7,,/p =
Uy + Uz, = 0, then u,, > 0 directly. Thus site X must be depressed and hence the horizontal
compression in the region between A and B must have a corresponding indentation of the surface.
We can construct a geometrical view of the same observation (Fig.2). Consider an element of area
at the surface at point X of Fig. 1. As above, because of the negative gradient du,/du,, there must
be an equal positive gradient du./du, under the condition of zero shear strain at the surface. These
gradients are shown at the left in Fig.2a. After we subtract the mean motion (Fig.2a) which is
rightward and downward (Fig.2b), there remains a residual net rotation of the elemental square in
the clockwise direction. Hence the surface is indented at X (Fig.2c¢). The problem of the wrinkling
of a carpet under horizontal displacements is somewhat different from the one considered here, since
the carpet problem involves a lower boundary that is not fixed; the carpet cannot undergo a vertical
depression.

Our intuitive expectation that the surface under compression would be likely to bulge upward would
be correct if the half-space were an incompressible fluid. But in the present case, it is indented because
the elastic half-space is not incompressible and because the shear stress vanishes at the surface.

We turn to the problem of the deformation of the half-space by a spatially sinusoidal set of horizontal
displacements at the surface (Fig.3,a). From the argument above, the vertical component of the
displacement must also be sinusoidal; the maxima of the bulges B and the minima of the indentations
D in the vertical component of the displacement at the surface must correspond to the extreme values
of extension E and compression C in the gradient of the horizontal component of the displacement
respectively (Fig.3,b). A zero value of the vertical component of the displacement corresponds to a
zero value of the gradient of the horizontal component. The two components of the sinusoids are 90°
out of phase at the surface. Since we are describing a wave, the temporal phase relationship between
the two components is also 90°. Because of the phase shift between the two components of the motion,
the motion at the surface must be elliptical. From the bulge/extension and indentation/compression
phase correlations at times (a,b,c,d), it is trivial to demonstrate that the elliptical motion is retrograde
at the surface (Fig.3,c); we say nothing quantitative about the ellipticity. Note that for waves that
propagate to the right, the wave u, leads the wave u,, while for waves that propagate to the left,
the wave u, leads the wave u,. The seeming anisotropy is an illusion of the vectorial nature of the
motion: Bulges in the component wu. are always located at sites of extension in the component u,,
and similarly for indentations and compressions for either direction of propagation. The motions are
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Fig. 3. Deformation of the half-space by sinusoidal
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retrograde elliptical at the surface for either direction of propagation.

Up to this point, none of these arguments have focused on the issues of the wave nature of Rayleigh
waves, except for the mention of the retrograde nature of the motion at the surface for sinusoidal
excitation. To evaluate the remaining remarkable property of Rayleigh waves, namely that its wave
velocity is less than that of S-waves, we must introduce the essential ingredient that characterizes the
differences between statics and dynamics, namely inertia. The introduction of inertia gives rise to the
wave properties of the deformation, characterized by the wave equation; stress is introduced into the
discussion implicitly, insofar as the wave equation is derived from the gradient of the stress in the usual
way. If displacements are applied at the free surface and not elsewhere, then the displacements must
decrease with depth at sufficient depth and approach zero at infinite depth within the half-space. For
sinusoidal motions, the displacements must decrease with depth exponentially at a rate that depends
on the wavelength of the horizontally traveling waves; the rates of decrease are different for the shear
and compressional components of the stress fields. Thus the solution to the wave equation must be a
harmonic wave that travels in the z-direction and decays exponentially in the z-direction at the rate
1 when scaled by the frequency w,

e—wnz eiw(l’/c—t)
1
where ¢ is the velocity of the Rayleigh wave; here the vertical spatial decay rate 7 is ng or np
depending on whether we consider the shear or compression wave components of the deformation.
After substitution into the wave equation, we get

1 1

2
a7 )

where o and  are the P- and S-wave velocities. By inspection, ¢ < § < «. Thus the property that
the phase velocity of Rayleigh waves is less than the S-wave velocity is a direct consequence of the
vanishing of the motion at infinite depth.

It follows from the above that np > ng, i.e. that the P-wave component of the motion decays more
rapidly than the S-wave component. The contrast between the two decay rates becomes very large
as ¢ — 3. The elastic features of the Rayleigh wave, including displacement vectors and stress and
strain components, all propagate with phase velocity ¢, and all have amplitudes that vary with depth
as a sum of terms with the two depth decay rates,

(Ae—umsz + Be—wm:z) eiw(l’/c—t)‘

The exception to this uniform behavior is the volumetric strain ez = €., + €.,, which has only the
single depth decay component e™“"P%_a result that is easily understood because the volumetric strain
is the invariant trace of the tensor and hence its falloff rate cannot depend on the shear properties of
the system, i.e. it is a solution to the P-wave equation only. There is a 90° phase shift between the
components of the pairs (uy, u.), (£zz,Ez2), etc.

Because the volumetric strain falls off more rapidly with depth than the shear strain, the wave
motions at sufficiently great depth are dominated by the shear properties. Of course, anywhere on the
axis below a symmetric extremum of indentation at the surface there can be no shear strain. Since the
material at great depth behaves like an incompressible fluid, it follows that the horizontal component
of the motion near the axis of symmetry must diverge outward from the axis of compression, i.e.
under an indentation at the surface, with the converse under a bulge (Fig.4). Hence there is a
reversal of the horizontal component of the motion at depth relative to that at the surface, and hence
the elliptical polarization at depth must be prograde. As a consequence, there must be a crossover
depth at which the horizontal component of sinusoidal motions is zero. This argument cannot be
made near the surface, since there the motion is controlled by the vanishing of the shear strain at the
surface; the volumetric strain does not vanish at the surface as it does at depth, in comparison with
the shear strain.
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We can now argue, again qualitatively, that the velocity of Rayleigh waves should be close to the
S-wave velocity; we have already indicated that it must be less than the S-wave velocity. The velocity
of the small motions in the Rayleigh waves at great depth is of course the same as that of the motions
at the surface. But the motions at great depth are mainly shear motions, since the compressional
part of the motion is relatively small at these depths. Thus the phase velocity of the motion must be
close to the S-wave velocity, and less than it by the argument above. The small difference between
the Rayleigh- and S-wave velocities is of course due to the small amount of energy remaining in
the compressional strain at these depths. Realistically, it is the large deformation at the surface
that drags the motion at depth along with it; after all, it is the boundary conditions at the surface
that determine the velocity of Rayleigh waves, and a velocity determined from the (mainly) shear
properties at depth is merely a method of qualitative calculation, and is not the principal physical
cause of the sub-shear wave velocity.

There is a final point concerning the rate of decrease of the vertical component of the motions.
The normal stress 7., = A(ug» + . .) + 2pu, . = 0 at the surface. Hence

uZ7Z = —

at z = 0. Since uy, < 0, then w,. > 0. Thus not only is . > 0, but also du./du, > 0 below a
region of horizontal compression at the surface. Thus the vertical displacement actually increases
with depth immediately below the surface; of course it decays to zero at greater depth. The general
shape of the depth dependence in both components of the motion can now be sketched as in Fig. 5.
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Fig. 5.Depth dependence of motion.

a) Schematic horizontal and vertical components of
the motion at z = 0, as in Fig.3; b) schematic am-
plitude u;(z) beneath a maximum of u,, showing re-
versal of sign at depth; ¢) schematic amplitude u(z)
beneath a maximum of u., showing positive gradient
near the surface

Fig.4. Motion at depth near the axis of symmetry
under a depression at the surface. Because of the ver-
tical compression at depth, the horizontal components
of motion diverge from the axis under the condition of
incompressiblity at depth. Thus there is a reversal in
sign of u, at great enough depth
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