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RAYLEIGH WAVES WITHOUT CUBIC EQUATIONS

L� Knopo�

Department of Physics and Astronomy and Institute of Geophysics and Planetary Physics
University of California� Los Angeles� USA

One of the major contributions of Volodya Keilis�Borok has been the founding and overseeing
of the publication of Computational Seismology� This journal has been an important resource
for solutions to di�cult mathematical and computational problems in seismicity and seismic wave
propagation�
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The physics of seismology forms the basis for any mathematical formulation of a computational
problem� There are two motivations for the introduction of deeper physics than the most super
cial
statements into computational seismology� In one case� the physics that is used in the mathematical
constructions may be so simple� that it leads to models that may have 
t only part of the complete
suite of geophysical observations� In this case one might wish to use more sophisticated physics to con�
strict an unmanageable manifold of models in the hope that extrapolations from appropriate models
can be better used in a predictive sense� As an example we cite recent interest in the understanding
of the processes that lead to the Gutenberg�Richter 
GR� frequency�moment or frequency�energy
scale�independent relation for regional earthquake occurrence� Any scale�independent model will
yield scale�independent distributions such as the GR law� Of course one can restrict the models
by the use of data with greater numbers of degrees of freedom� i�e� to search for deviations from
scale�independent behavior� One can also restrict the class of scale�independent models to give the
appropriate b�value� or to account for broad�band seismographic observations� On the physics side�
one might improve models of fracture by introducing dynamics into these simulations� or by intro�
ducing inhomogeneities into the description of faulting� A second motivation for considering physics
in the computational process� is to provide understanding to discoveries that are cloaked in either
phenomenology or mathematics� I can summarize this class of problems by suggesting that there is
an innate curiosity on the part of most scientists to ask why or how certain observations in mathe�
matical theory or in correlation studies arise� As an example of the phenomenological or correlation
genre� we might ask why large earthquakes cluster in space and in time� The issues of understanding
of physical underpinnings are self�indulgent exercises without immediate consequences on the practi�
calities of computation� A focus on the �why or how� problem is an issue of pedagogy rather than one
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of practicality� In this paper I give an example of the search for a physical basis for a mathematical
problem in seismology� I seek to explore the logical space between the formulation and the numerical
results of a problem in the study of Rayleigh waves�
The beginning student of seismology often asks about the physical nature of Rayleigh waves on a

half�space� The professorial response to the physics question is usually a mathematical one� which
is of course the answer to a di�erent question� for example� it is replied that the Rayleigh wave
on a homogeneous half�space is the solution to an eigenvalue equation� with an eigenvalue that is
one root of a cubic equation� or there is a response in terms of the re�ection at complex angles of
plane P� and S�waves that are incident on the surface� The student questions why a direct physical
explanation in terms of the deformation of an elastic body is not possible� in direct contrast to the
immediacy and transparency with which compression waves and shear waves can be understood in
terms of a transparent physical picture of the deformation of elastic materials under stress� Why
must the nature of a Rayleigh wave be obscured in abstract mathematical manipulations� Is there
no simple explanation in terms of the physics of such a fundamental wave property� in analogy with
that for compression and shear�
In this note� I o�er a simple physical explanation for the phenomenon of Rayleigh waves on a

homogeneous half�space� I show without di�cult mathematics that the motions will be retrograde
elliptical on the surface for sinusoidal time dependence of the Rayleigh wave motions and prograde
elliptical at depth� Since this will be a qualitative theory� it will be impossible to derive the phase
velocity of Rayleigh waves precisely� but I show that the phase velocity is less than the S�wave velocity�
Consider an elastic half�space deformed by horizontal displacements at the surface as illustrated

in Fig� �� To the left of point A� the surface is displaced uniformly to the right� while to the right
of point B� the surface is displaced equally uniformly to the left� Since there is no compression or
extension of the undeformed regions at the far left and right� there is of course no vertical component
of the displacement in these regions� A vertical displacement of the surface in the central region is
associated with the gradient of the horizontal component of the displacement�
We solve for the sign of the vertical component of the displacement in the transitional interval

between the two undeformed regions� Consider the point X at the surface of the half�space 
Fig� ���
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Fig� �� Elastic half�space deformed by horizontal dis�
placements at the surface�
a/ Horizontal displacements applied at the surface
of an elastic half�space� The displacements are pos�
itive and uniform to the left of A and negative and
uniform to the right of B0 b/ ux1x/ at z 2 3� c/ uz1x/
at z 2 3

Fig� �� Deformation of an element of area at point X
1see Fig� 4/ in the surface of the half�space� under a
condition of vanishing shear stress�
a/ Deformation has a negative vertical gradient of

ux and an equal positive horizontal gradient of uz�
These can be decomposed into a translation and a
rotation0 b/ vectorial decomposition as in a/0 c/ total
motion of element showing depression and rotation of
surface line element AB
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The displacements of the elastic medium resulting from the deformation of the surface must decrease
with increasing depth� and vanish at in
nite depth� Thus ux�z � �� 
I use the comma notation for
partial derivatives� ux�z � �ux��uz� etc�� Since the boundary condition at the surface is �xz�� �
ux�z � uz�x � �� then uz�x � � directly� Thus site X must be depressed and hence the horizontal
compression in the region between A and B must have a corresponding indentation of the surface�
We can construct a geometrical view of the same observation 
Fig� ��� Consider an element of area
at the surface at point X of Fig� �� As above� because of the negative gradient �ux��uz � there must
be an equal positive gradient �uz��ux under the condition of zero shear strain at the surface� These
gradients are shown at the left in Fig� �a� After we subtract the mean motion 
Fig� �a� which is
rightward and downward 
Fig� �b�� there remains a residual net rotation of the elemental square in
the clockwise direction� Hence the surface is indented at X 
Fig� �c�� The problem of the wrinkling
of a carpet under horizontal displacements is somewhat di�erent from the one considered here� since
the carpet problem involves a lower boundary that is not 
xed� the carpet cannot undergo a vertical
depression�
Our intuitive expectation that the surface under compression would be likely to bulge upward would

be correct if the half�space were an incompressible �uid� But in the present case� it is indented because
the elastic half�space is not incompressible and because the shear stress vanishes at the surface�
We turn to the problem of the deformation of the half�space by a spatially sinusoidal set of horizontal

displacements at the surface 
Fig� ��a�� From the argument above� the vertical component of the
displacement must also be sinusoidal� the maxima of the bulges B and the minima of the indentations
D in the vertical component of the displacement at the surface must correspond to the extreme values
of extension E and compression C in the gradient of the horizontal component of the displacement
respectively 
Fig� ��b�� A zero value of the vertical component of the displacement corresponds to a
zero value of the gradient of the horizontal component� The two components of the sinusoids are ���

out of phase at the surface� Since we are describing a wave� the temporal phase relationship between
the two components is also ���� Because of the phase shift between the two components of the motion�
the motion at the surface must be elliptical� From the bulge�extension and indentation�compression
phase correlations at times 
a�b�c�d�� it is trivial to demonstrate that the elliptical motion is retrograde
at the surface 
Fig� ��c�� we say nothing quantitative about the ellipticity� Note that for waves that
propagate to the right� the wave uz leads the wave ux� while for waves that propagate to the left�
the wave ux leads the wave uz � The seeming anisotropy is an illusion of the vectorial nature of the
motion� Bulges in the component uz are always located at sites of extension in the component ux�
and similarly for indentations and compressions for either direction of propagation� The motions are

Fig� �� Deformation of the half�space by sinusoidal
displacements at the surface�
a/ Sinusoidal deformation of the surface by hori�
zontal components of motion� C and E are sites of
maximum compression and extension0 b/ schematic
vertical component of motion in correspondence with
a� D and B denote sites of maximum indentation 1de�
pression/ and bulge� These correspond identically to
sites C and E in a0 c/ motion is retrograde elliptically
polarized� Successive times a� b� c� d correspond to
those in b/ for a wave moving to the right

Direction of Wave
Propagation

C C CCE E E

D D

d

DDBB B

abc

d

a

b

c

a

b

c

u

u

u

u

x

z

z

x



�� ������ � �����
�� ������ ��
��������

retrograde elliptical at the surface for either direction of propagation�
Up to this point� none of these arguments have focused on the issues of the wave nature of Rayleigh

waves� except for the mention of the retrograde nature of the motion at the surface for sinusoidal
excitation� To evaluate the remaining remarkable property of Rayleigh waves� namely that its wave
velocity is less than that of S�waves� we must introduce the essential ingredient that characterizes the
di�erences between statics and dynamics� namely inertia� The introduction of inertia gives rise to the
wave properties of the deformation� characterized by the wave equation� stress is introduced into the
discussion implicitly� insofar as the wave equation is derived from the gradient of the stress in the usual
way� If displacements are applied at the free surface and not elsewhere� then the displacements must
decrease with depth at su�cient depth and approach zero at in
nite depth within the half�space� For
sinusoidal motions� the displacements must decrease with depth exponentially at a rate that depends
on the wavelength of the horizontally traveling waves� the rates of decrease are di�erent for the shear
and compressional components of the stress 
elds� Thus the solution to the wave equation must be a
harmonic wave that travels in the x�direction and decays exponentially in the z�direction at the rate
	 when scaled by the frequency 
�

e���zei��x�c�t	�

where c is the velocity of the Rayleigh wave� here the vertical spatial decay rate 	 is 	S or 	P
depending on whether we consider the shear or compression wave components of the deformation�
After substitution into the wave equation� we get

�

c�
�

�
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where � and � are the P� and S�wave velocities� By inspection� c � � � �
 Thus the property that
the phase velocity of Rayleigh waves is less than the S�wave velocity is a direct consequence of the
vanishing of the motion at in
nite depth�
It follows from the above that 	P � 	S � i�e� that the P�wave component of the motion decays more

rapidly than the S�wave component� The contrast between the two decay rates becomes very large
as c � �� The elastic features of the Rayleigh wave� including displacement vectors and stress and
strain components� all propagate with phase velocity c� and all have amplitudes that vary with depth
as a sum of terms with the two depth decay rates�

�
Ae���Sz � Be���P z

�
ei��x�c�t	


The exception to this uniform behavior is the volumetric strain �kk � �xx � �zz � which has only the
single depth decay component e���P z � a result that is easily understood because the volumetric strain
is the invariant trace of the tensor and hence its fallo� rate cannot depend on the shear properties of
the system� i�e� it is a solution to the P�wave equation only� There is a ��� phase shift between the
components of the pairs 
ux� uz�� 
�xx� �xz�� etc�
Because the volumetric strain falls o� more rapidly with depth than the shear strain� the wave

motions at su�ciently great depth are dominated by the shear properties� Of course� anywhere on the
axis below a symmetric extremum of indentation at the surface there can be no shear strain� Since the
material at great depth behaves like an incompressible �uid� it follows that the horizontal component
of the motion near the axis of symmetry must diverge outward from the axis of compression� i�e�
under an indentation at the surface� with the converse under a bulge 
Fig� 	�� Hence there is a
reversal of the horizontal component of the motion at depth relative to that at the surface� and hence
the elliptical polarization at depth must be prograde� As a consequence� there must be a crossover
depth at which the horizontal component of sinusoidal motions is zero� This argument cannot be
made near the surface� since there the motion is controlled by the vanishing of the shear strain at the
surface� the volumetric strain does not vanish at the surface as it does at depth� in comparison with
the shear strain�
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We can now argue� again qualitatively� that the velocity of Rayleigh waves should be close to the
S�wave velocity� we have already indicated that it must be less than the S�wave velocity� The velocity
of the small motions in the Rayleigh waves at great depth is of course the same as that of the motions
at the surface� But the motions at great depth are mainly shear motions� since the compressional
part of the motion is relatively small at these depths� Thus the phase velocity of the motion must be
close to the S�wave velocity� and less than it by the argument above� The small di�erence between
the Rayleigh� and S�wave velocities is of course due to the small amount of energy remaining in
the compressional strain at these depths� Realistically� it is the large deformation at the surface
that drags the motion at depth along with it� after all� it is the boundary conditions at the surface
that determine the velocity of Rayleigh waves� and a velocity determined from the 
mainly� shear
properties at depth is merely a method of qualitative calculation� and is not the principal physical
cause of the sub�shear wave velocity�
There is a 
nal point concerning the rate of decrease of the vertical component of the motions�

The normal stress �zz � �
ux�x � uz�z� � ��uz�z � � at the surface� Hence

uz�z � �
�

�� ��
ux�x

at z � �� Since ux�x � �� then uz�z � �
 Thus not only is uz � �� but also �uz��uz � � below a
region of horizontal compression at the surface� Thus the vertical displacement actually increases
with depth immediately below the surface� of course it decays to zero at greater depth� The general
shape of the depth dependence in both components of the motion can now be sketched as in Fig� ��
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Fig� �� Motion at depth near the axis of symmetry
under a depression at the surface� Because of the ver�
tical compression at depth� the horizontal components
of motion diverge from the axis under the condition of
incompressiblity at depth� Thus there is a reversal in
sign of ux at great enough depth

Fig� ��Depth dependence of motion�
a/ Schematic horizontal and vertical components of
the motion at z 2 3� as in Fig� 50 b/ schematic am�
plitude ux1z/ beneath a maximum of ux� showing re�
versal of sign at depth0 c/ schematic amplitude uz1z/
beneath a maximum of uz� showing positive gradient
near the surface
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