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THE SHEAR STRESS OF DEEP EARTHQUAKES

M. Caputo

Physics Department, University ”La Sapienza”, Rome, Italy

In the studies of deep earthquakes it is generally assumed that they are caused by a volume
collapse due to a phase change in a portion of the Earth mantle limited by an appropriate surface.
The variation of the volume in turn generates stress changes in the surrounding part of the mantle.
We here assume that the surface may be approximated by an ellipsoid of revolution and study
the maximum shear stress (mss) caused by a uniform normal stress applied to the surface of the
ellipsoid in order to establish a link between the shear waves observed after the deep earthquake
and the shear stress drop in the medium around the surface of the collapsing body. The seismic
moment due to the collapse is then estimated; one approach is based on an estimate of the stress
drop occurring in a volume around the collapsed body, the other is based on an estimate of the
displacement occurring on the surface which contained the collapsed body.

TAPI'EPIINMAJIBPBIE PAPPAXKEP 1A
PPU I'VIYPOKUX SEMJIETPACEP NAX

M. KanyTo

Pumckmn yameepcurer Jla Cammenna, /[lenaprament ¢uankm, Pum, MTamsa

Ppu uccregosanmax riay6oKopOKYCHBIX 3eMJIETPACEHUN OOBIMHO MPUHUMAETCH, 9TO OHHU BO3HU-
KaloT 0T 06BEMHOIO paspylIeHNs, BEI3BAHHOTO (PA30BBIM TIEPEXOJIOM B HEKOTOPOU 9ACTH MAHTHUM
3eMJIH, OrpAHUYEHHON COOTBETCTBYIONIEN MIOBEPXHOCTHIO. B CBOIO 04epeib, 9TO U3MEHEeHe 06bheMa
BBI3BIBAET M3MEHEHHE HAINPSKEHUN B OKPYXKaolleM o6beMe MaHTuu. MBI IIPUHUMAEM, 9TO 3Ty
TIOBEPXHOCTHh MOXKHO AIIIPOKCHMHPOBATDH SJIMIICOMIOM BpAllleHUA U M3yJaTh MaKCHMaJbHOE TaH-
TeHIIajJbHOe HalpsSXKeHIe, BEI3BaHHOE OJHOPOTHBIM HOPMAJIbHBIM HalpAXKeHNeM, HPUJIOKEeHHBIM
K MOBEPXHOCTHU SJUIATICOUA JJIS TOTO, 9TOOB YCTAHOBUTDL CBA3bL MEXKIY MOMEPEIHBIMU CEUCMUIHe-
CKHMM BOJHAMU, PEIUCTPUPYEMBIMHE ITOCHE TVIyOOKOI 0 3eMIe TPACEHNUA U ITafeHHeM TaHT eHITHAJbHBIX
HANPAKEHWHA B Cpejle BOKPYT IOBEPXHOCTH 06pyIlIeHHOro o6bema moposn. Pocae sToro onenuBa-
eTCs CEeNCMUYECKU MOMeHT o6pyurenusa. OnuH U3 MOAX0J0B K TAKOMY OIECHUBAHUIO OCHOBAH HA
MAaeHUN HATIPSXKEHUS, ONPENEIeHHOM B HEKOTOPOM 006beMe BOKPYD OOPYLIEHHOTO TeAa, a APYTon
HUCIIOJB3YET OIEHKY CMEIIEHU, IPOUCXOIAIIET0 HA MOBEPXHOCTH, COAEPKALIEH 06PYIIEHHOE TENO0.

Introduction

The recording of earthquakes at a depth of several hundred kilometers was a great surprise in
seismology, but the studies of the cause of the earthquakes lead readily to the phase changes with
associated volume contractions. Its was also a surprise when the studies of the focal mechanism
of these earthquakes discovered that they have a shear component which, at first sight, should not
be caused by volumetric changes. However, a simple computation of the stress field in an infinite
medium containing a spherical cavity C subject to a uniform normal stress p shows the existence of a
shear component. When the stress p has a change dp, the computations show that it causes a change
in shear field which reaches its maximum value 0.75dp at the surface of C. The same may be easily
extended to a spherical shell whose inner cavity is subject to a uniform normal stress which would
be a better, although not yet satisfactory, model of the Earth. However, spherical cavities subject
to uniform normal stress could be only a very crude first approximation for the surface limiting the
body of rock collapsing in a phase change, a better approximation is the surface of an ellipsoid of
revolution with semiaxes which may be selected at will for the computations.
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In fact in the case of an Earth model whose physical and chemical properties have spherical sym-
metry, if the physical conditions required for the phase change to occur are satisfied at a point P, they
would also be satisfied at any point of the spherical surface S, centered in the Earth’s center, through
P. The nucleation in P would then propagate preferentially, and perhaps with grater velocity, along
S than in the normal direction to S. The phase change would then occupy a volume which may be
tentatively approximated with and ellipsoid of revolution with semi-minor axis limited by the physical
conditions necessary for the phase change to occur.

Since the tangential propagation of the phase change tv;, with ¢ time and v; tangential velocity
of propagation, is larger that the radial one tr, and the latter is limited by the physical conditions
required for the phase change, the flattening of the ellipsoidal volume is bound to approach unity and
the mss at the equator of the volume will increase possibly above the fracture limit.

It is often assumed in seismology that geological faults are geometrically described by ellipsoids
of revolution with almost unit flattening (e.g. [8]). The case where the elastic medium with an
embedded ellipsoidal cavity is subject to a uniform normal tension or compression is of interest in
the geological and volcanological applications, because they represent practical cases of magmatic
chambers or faults.

The problem is of interest also to the studies of Earth’s deformations, which are often observed in
underground cavities, because the cavity modifies the strain field in the vicinity as pointed out by
King and Bilham [9] who also suggested that this effect could account for many of the inconsistencies
in tidal tilt observations. The practical computations of the displacements were made by Harrison
[7] and Sato and Harrison [12] who estimated this effect and found that in fact relevant corrections
are needed when the observations of strain are made in cavities where for instance the tilt on the
surface of the cavity may have great variations from place to place because, as shown by Caputo and
Console [4], in some particular cases, there are points where the tilt may result nil.

The problem of estimating the stress field caused by a cavity in a body subject to stress is also
of great interest in applied mechanics and has been treated by Neuber [10, 11] who estimated the
displacement and stress fields in the infinite medium when it is subject to a shear parallel to the
equator of the cavity or to a stress normal to it.

Keilis Borok [8] used the formulae of Neuber [10, 11], considering an infinite isotropic medium in
which the strain becomes uniform at large distances from the cavity, and applied them to obtain the
relation giving the displacement of the surface of the cavity as a function of the applied shear in the
limiting case where the flattening of the cavity is unity, which is of great interest in the studies of the
earthquake source with a double couple. Similar results where obtained also by Eshelby [5].

These authors however have not considered the case where the cavity is subject to surface stress.

Finally Caputo [2] extended a work of Neuber [10, 11] to the case where the surface of the cavity is
also subject to forces, specifically a uniform normal stress, in the case where the medium is anelastic,
presented formulae which could be specialized to the case where the only force field acting is the
uniform normal stress at the surface of the cavity and showed that this stress generated a shear stress
field in the surrounding medium. Of particular interest is the study of the stress field around the
cavity also because it governs the possible generation of successive fractures.

Caputo and Console [4] computed the displacement field, the maximum shear stress (mss) field
and its direction in the cases when the medium and/or the cavity are subject to several types of forces
finding also that there is a tubular region around the equator of the ellipsoidal cavity with a large
stress concentration and that the concentration factor, in general, is inversely proportional to the
maximum radius of curvature at the equator; these authors discussed also the possibility of fractures
in this region and their orientations. However also Caputo and Console [4] have not addressed directly
the problem of the practical computation of the stress field in the infinite medium where the cavity is
simply subject to a uniform normal stress which is of great interest in studies of deep earthquakes in
order to establish a link between the observed shear waves and the shear stress drop in the medium
in the vicinity of the surface of the collapsing body.

This stress drop may be due to the change of volume caused by the phase change in a portion of
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the Earth mantle limited by an appropriate surface. The variation of the surface in turn generates
stress changes in the surrounding part of the mantle. We then assume that this surface may be
approximated by an ellipsoid of revolution and study the mss in and around the surface itself. How
fast the volume and surface change occurs is not important, the shear stress accumulates and, when
a critical value is reached, the earthquake may be triggered. The volume variations associated with
the phase change may reach values of about 10% for instance in the case of the change from olivine
to spinel [6, 14].

In this note, using the formulae of Caputo [2] and Caputo and Console [4], we therefore compute
the stress field in an infinite medium containing an ellipsoidal cavity with the symmetry of revolution
where a uniform normal stress is applied. We may also add that even if the process of phase change
were to stop when it has reached a given volume, the rheology of the medium, owing to the surrounding
pressure, will increase the flattening of the surface limiting the ellipsoidal volume and therefore
increase the possibility of a fracture [2].

The computation of the maximum shear stress (mss) field

We consider an infinite elastic medium with a cavity limited by an ellipsoid of revolution and the
following system of ellipsoidal coordinate system u, v, w:

x = I'sinh u cosvp,

y = I cosh usin v cos w,

z = I cosh wsin vsin w,
(22 +y?)/ cosh? u + 2 /sinh? u = I

with the first fundamental form

ds® = hz(du2 + dl/2) + hidwz;

h* = I?*(cosh®*u —sin*v); hy, = Icoshusinv (2)

The surface coordinates u = const are ellipsoids of revolution with major and minor semiaxes
I cosh u and Isinh u respectively, the surfaces v = const are hyperbolas, both have revolution sym-
metry about the z-axis, the surfaces w = const are planes through the z-axis.

We assume that the ellipsoidal cavity is defined by u = ug = const.

The parameter of interest in the present discussion is ug which defines the ratio f of the semiaxes
of the ellipsoid

f = tanh ug. (3)

When wug is nil, f is nil and the cavity becomes a flat disk; when ug is infinite, then f is unity and the
cavity becomes a sphere. It is worth noting that the flattening of the ellipsoid is 1 — f. Since only
the relative dimensions of the semiaxes of the ellipsoid are of interest we will assume I = 1 in which
case, changing ug, both semiaxes of the cavity change length.

We computed the stress components oy, 0,, 0., Ty and the maximum shear stress (mss) at the
equator and at the pole of the cavity. The value of mss is minimum at the pole and maximum at the
equator where the curvature of the cavity is maximum. In the plane of the equator outside the cavity
the mss decreases with distance. The formulae expressing the stress components are those obtained
by Caputo [2] and used already by Caputo and Console [4]. The mss at the equator of the cavity is
shown in Fig. 1 as a function of the ratio f of the semiaxes. One may see analytically that when f is
nil the mss is infinite; in the figure one may also note that the mss is a decreasing function of f.
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Fig.1. Maximum shear stress (mss) at the surface of 4 4
ellipsoids of revolution with minor and major semiaxes
b and a respectively, as a function of the ratio b/a. 3 4! - 04

The solid curve gives the mss at the pole of the
ellipsoids with scale to the right, the dashed curve
gives the mss at the equator of the ellipsoids with
scale to the left. The mss is measured in units of the
normal stress supplied to the surface of the ellipsoid
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A practical form of the collapsed body could be that defined by f = 0.01 in this case, the major
semiaxis of the ellipsoid is 100 times larger than the minor semiaxis or the body is almost a lens limited
between two close Earth’s radii; then it is seen from the Fig.1 that the mss at the equator is more
than 100 times the normal stress applied to the surface of the cavity. This enormous concentration
of stress at the equator of the cavity could be the nucleation of fracture causing the earthquake and
explaining the presence of shear in the focal mechanism of deep earthquakes; neglecting the possible
presence of a local tectonic stress, the stress drop of an earthquake is limited by the mss at the
equator of the cavity and could be used as an upper limit for the mss caused by the phase change.

Conclusions

Concerning the seismic moment we will consider two tentative approaches for its estimate. One
approach (a) is based on an estimate of the stress drop occurring in a volume surrounding the
collapsed body, the other (b) is based on an estimate of the displacement occurring at the surface
which contained the collapsed body.

It is assumed in case (a) that the stress drop is of the order of the strength of rocks which in
turn increases with the confining pressure [13]. A possible depth of a deep earthquake may be taken
300 km where we assume a strength of 2000 MPa extrapolating the data shown by Scholz [13] which
seem to level off at a confining pressure of 800 MPa with a value of 2000 MPa.

If the ellipsoidal volume of the collapsed body has major semiaxis [, minor semiaxis fl, and stress
drop p, assuming that, due to the concentration of stress at the equator of the ellipsoidal volume, the
stress drop is that of fracture about 2000 Mpa and involves a volume surrounding the collapsed body
as large as that of the body, the seismic moment is

Mo = (47/3) flp, (4)

whose values are shown in Fig.2, with f = 0.01 and [ in the range [1,50] km.
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Fig. 2. Estimates of the seismic moment as a func-
tion of the radius of the equator of the ellipsoidal
collapsing body under the hypothesis of a volume
change in the final phase of the collapse (dashed
curve) and of a stress drop in the surrounding vol- 25
ume in the final phase (solid curve)
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In the hypothesis (b) we tentatively assume that the displacement on the upper and lower surface
of the cavity containing the collapsed volume is about 0.001 of the minor semiaxis, that is, 0.001 f1,
which corresponds, with the assumed flattening close to unity (f = 0.01), to a volume change in the
final phase of the collapse of 0.002%, the seismic moment is [2]

Mg = 70.001 fI>(A + 2/3) (5)

where we put A = 2u = 2 x 1012, The values of (5) are presented in Fig.2 with f = 0.01 with [ in
the range [1,50] km. The difference with the values of the hypothesis (a) is one unit of log M.

The partial agreement of the values given by formulae (4) and (5) is only fortuitous since the value
of the stress drop used in formula (4) is extrapolated from the values observed to 800 MPa and the
value of the displacement used in formula (5) is an assumption and is not observed.

There would be several possibilities to explain the different results, the most obvious is that both,
displacement and stress drop are crude estimates, also the formulae used for the seismic moment are
approximations only and, finally, it is possible that the linear theory is not adequate.

As a final comment we note that, since the stress is released in a cavity, shear will be released and
shear waves will be generated, which was surprising in the studies of deep earthquakes.
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