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We develop theoretical formulas for the prediction of the rupture of systems which are known to
exhibit a critical behavior� based solely on the knowledge of the early time evolution of an observable�
such as the acoustic emission rate as a function of time or of stress� From the parameterization of
such early time evolution in terms of a low�order polynomial� we use the functional renormalization
approach introduced by Yukalov and Gluzman to transform this polynomial into a function which
is asymptotically a power law� The value of the critical time tc� conditioned on the assumption that
tc exists� is thus determined from the knowledge of the coe	cients of the polynomials� We test
with success this prediction scheme with respect to the order of the polynomials and as a function
of noise�
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Introduction

To what extent can the material failure of a mechanical system under stress be forecasted
 This
question has enormous technological interest for its economic and human consequences� especially in
the automobile� naval� aeronautics and space industries ��� as well as in the sensitive chemical and
nuclear industries to cite a few among many examples�

If rupture occurs brutally without precursors� prediction is impossible� In contrast� Mogi noticed
that� for experiments on a variety of materials� the larger the heterogeneity of the material� the
stronger and more useful are the precursors to rupture ��� For a long time� the Japanese research
e�ort for earthquake prediction and risk assessment was based on this very idea �	�

These empirical facts have been put on a �rm theoretical basis by using various simpli�ed mechan�
ical models of failure of heterogeneous materials which showed that� increasing the disorder changes
rupture from �rst�order �abrupt� to critical �continuous with power�law properties� ��� By the term
�disorder�� we refer to heterogeneity in material properties �elastic coe�cients and rupture thresholds�
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as well as inhomogeneous pre�stresses� In the presence of long�range elasticity� disorder is found to be
always relevant leading to a critical rupture� However� the disorder controls the width of the critical
region ��� The smaller it is� the smaller will be the critical region� which may become too small to
play any role in practice�

The potential for predicting rupture thus seems associated with its critical nature� Let us �rst
review past works which support this concept of critical rupture� Theoretically� the concept that
rupture is critical was �rst formulated by Vere�Jones �� using critical branching models and All�egre
et al� �� using the percolation model and real�space renormalization group �see �� for a general
presentation�� The Russian school has also extensively developed this concept ������ One of us
and co�workers have introduced a statistical two�dimensional model of dynamically evolving damage
���� which exhibits the critical time�to�failure dependence of the energy released up to the rupture�
Based on a precise numerical description of the many growing interacting micro�cracks with a spatio�
temporal organization which is a function of the stress�dependent damage law� one �nds that� under a
step�function stress loading� the total rate of damage increases on average as a power�law of the time�
to�failure� In this model� rupture is a �critical point� in the statistical physics sense �� and occurs
as the culmination of the progressive nucleation� growth and fusion between microcracks� leading to
a fractal network of cracks� This simple model has since then been found to describe quantitatively
the experiments on the electric breakdown of insulator�conducting composites ��	 and the damage
by electromigration of polycrystalline metal �lms ���� This led to the proposal and the empirical
test on real engineering composite structures that failure in �ber composites is a genuine �critical�
point ���� This critical behavior may correspond to an acceleration of the rate of energy release
or to a deceleration� depending on the nature and range of the stress transfer mechanism and on
the loading procedure� A generalization is to extend the power�law behavior of the time�to�failure
analysis by including corrections in the form of log�periodic modulations ���� Log�periodicity is the
hallmark of a hierarchy of discrete characteristic scales in the rupture process� Mathematically� it
corresponds to adding an imaginary part to the exponent z �de�ned below�� Intuitively� the log�
periodic oscillations are oscillations that are periodic in the logarithm of the time�to�failure and
thus corresponds to an accelerating frequency modulation as the critical time is approached� This
acceleration of alternating ups and downs accounts for the succession of damage and quiescent phases
self�organizing and culminating in the rupture�

Following this work ���� this method has been used extensively by the French Aerospace company
A�erospatiale on pressure tanks made of kevlar�matrix and carbon�matrix composites used on the
European Ariane � and � rockets� In this application� the method consists in recording acoustic
emissions under constant stress rate� The acoustic emission energy as a function of stress is �tted
by the critical theory mentioned above� One of the parameters is the time of failure and the �t
thus provides a �prediction� when the sample is not brought to failure in the �rst test� The results
indicate that a precision of a few percent in the determination of the stress at rupture is typically
obtained using acoustic emission recorded about ��� below the stress for rupture� We now have a
better understanding of the conditions� the mathematical properties and physical mechanisms at the
basis of log�periodic structures ����

The numerical simulations of Sahimi and Arbabi ��� have con�rmed that� near the global failure
point� the cumulative elastic energy released during fracturing of heterogeneous solids with long�range
elastic interactions exhibit a critical behavior with observable log�periodic corrections� Molecular dy�
namics simulations of the geometry of fracture patterns in a dilute elastic network give similar results
��� under a uniform strain which drives the fracture to develop by the growth and coalescence of
the vacancy clusters in the network� there exists a characteristic time at which a dynamical transition
occurs with a power law divergence of the average cluster size� The cluster growth near the critical
time also exhibits spatial scaling in addition to the temporal scaling� namely as fracture develops with
time� the connectivity length of the clusters increases and diverges at tc� Recent experiments on the
rupture of �ber�glass composites have also con�rmed the critical scenario ���� Johansen and Sornette
��� have recently re�analyzed the acoustic emissions recorded during the pressurization of spherical
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tanks of kevlar or carbon �bers impregnated in a resin matrix wrapped up around a thin metallic
liner �steel or titanium� fabricated and instrumented by Aerospatiale�Matra Inc� These experiments
were performed as part of a routine industrial procedure� which tests the quality of the tanks prior to
shipment� It was found that the seven acoustic emission recordings of seven pressure tanks which was
brought to rupture exhibit clear acceleration in agreement with a power�law �divergence� expected
from the critical point theory�

At the same time� it became tempting ��� to apply similar considerations to earthquakes� Indeed�
over the years there has been a growing evidence that a signi�cant proportion of large and great
earthquakes are preceded by a period of accelerating seismic activity of moderate�sized earthquakes�
These moderate earthquakes occur during the years to decades prior to the occurrence of the large
or great events and over a region much larger than its rupture zone� Sornette and Sammis ���
identi�ed a speci�c measurable signature of this criticality in terms of a power�law acceleration of
the Benio� strain previously interpreted as an exponential mechanical�damage rate �����	� The
combined observational and simulation evidence now seems to con�rm that the period of increased
moment release in moderate earthquakes signals the establishment of long�wavelength correlations in
the regional stress �eld� Large or great earthquakes appear to dissipate a su�cient proportion of the
accumulated regional strain to destroy these long wavelength stress correlations ���� They can thus
be considered as di�erent from smaller earthquakes� According to this model� large earthquakes are
not just scaled�up version of small earthquakes but play a special role as �critical points� ���� ���
Recent extensions to the intermediate scale of rockbursts in deep mines con�rm the picture ����

To summarize these works� there is a rather strong evidence that rupture in heterogeneous media
is critical in the sense of statistical physics ��� To what extent can the critical rupture concept be
used to predict rupture
 Voight noticed in an exciting precursory work that many systems fail by
exhibiting a typical relationship relating the second time derivative d�!�dt� of some observable ! to
a positive power of ! itself ���� ��� He then used this relationship to attempt predictions of failures
in various materials and of volcanic eruptions� Basically� the relationship he postulates is nothing
but a power law time�to�failure evolution of the observable !

!�t� " A �tc � t�z � ���

where tc is the critical time of rupture� z is a critical exponent and A a numerical amplitude�
By di�erentiating twice and eliminating time� we indeed get d�!�dt� " B !�z����z � where B "
z�z # ��A���z �

As we said above� the critical rupture concept establishes theoretically the law ��� as the result
of the cooperative organization of precursory damage preparing the global rupture� If an observable
such as the rate of acoustic emissions radiated during loading exhibit an acceleration close to rupture
of form ��� as documented in several experiments ������� �� it is clear that one can try to �t the
data by ��� and get a prediction from the determination of tc�

In practice� the problem is that the �t of a simple power law ��� to a noisy data is rather unstable�
so much so that often no �ts can be found �	�� The problem comes from the fact that only close
to tc �in some relevant time units� can the power law be clearly distinguished from other parametric
accelerating functional forms� such as an exponential� As an exponential has no critical time� this
leads to an ill�de�ned rupture time� The fundamental limitation in using this prediction scheme
is thus that tc is determined only when data is used up to very close to tc� This is thus far from
the prediction goal to infer tc from a distance$ One possibility to improve the reliability and range
of power law �ts far from tc has been proposed� based on log�periodic corrections to power laws
������� ��� ������

In the present paper� we propose a di�erent approach to the prediction of tc� In the next section�
we give the gist of the method and formulate the problem in precise terms� We also provide a brief
summary of the functional renormalization method� In section 	� we test the method in the situation
where both the polynomial expansion at early times and the value of tc is known� to see how the
time�dependence is reconstructed by the functional renormalization� In section �� we present the
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genuine prediction scheme which determines tc solely from the knowledge of the �rst few coe�cients
of the polynomial �t at early times and the assumption that the late time dynamics is of the power
law form ���� In particular� we test how the precision of the prediction improves by adding more
terms in the polynomial expansion� Section � presents numerical tests of our method compared to
direct �ts by a power law for noisy data and section � concludes�

�� Formulation of the problem and outline of the method

The gist of the method is as follows� We assume that we are able to parameterize the early time
evolution of an observable� such as the acoustic emission rate as a function of time or of stress by
�tting the data to a low�order polynomial !�t� " a� #a�t#a�t

� # � � � � We then use the sophisticated
functional renormalization approach introduced by Yukalov and Yukalov and Gluzman �	����� We
use the version developed in �	� that transforms a polynomial into an analytic e�ective sum with an
asymptotic power law of the form ��� close to some tc to be determined� The value of the critical
time tc� conditioned on the assumption that tc exists� is thus determined from the knowledge of the
coe�cients a�� a�� a�� � � � �

In order to test our proposed scheme� we compare the results of our method to the exact evolution
with time of the macroscopic crack length in an exactly solvable model of rupture with damage
��	� ��� In this self�consistent theory� the growth of a single macroscopic crack is controlled by
cumulative damage dependent on stress history� The damage D accumulates according to the equation
dD�dt � �m� where � is the local stress proportional to the globally applied stress �� but which takes
into account the distortion due to the crack and m is the damage exponent� The law describing
the growth of the crack� i�e�� the dynamics of its half�length a�t�� is obtained from the following
self�consistent condition the time it takes from a point at the some distance L from the crack tip at
time � for its damage to reach the rupture threshold D� is exactly equal to the time taken for the
crack to grow from its size at time � by an increment L so that its tip reaches the point exactly when
it ruptures� For m " �� the full solution is known ��	���

a�t� "
a�

cos����t�	D��
� ���

and is indeed of the form ��� close to tc " 	D����� with z " ���
For the convenience of notations� we work in the sequel with dimensionless variables f " a�a� and

t�����	D��� t� so that the solution ��� becomes

fexact�t� "
�

cos t
� �	�

Let us assume that we have access only to the small time dynamics� captured mathematically by
the �rst terms in the expansion of the solution �	� 

fa�t� " � # a�t
� # a�t

	 # a
t
� # � � � with a� " ���� a� " ����� and a
 "

��

���
� ���

Since the cosine function is even in t� only even powers of t are present� Knowledge of only the �rst
few terms in ��� is the relevant situation for instance in an experiment in which the early acoustic
emissions are recorded and one would like to infer the subsequent evolution�

To make this paper self�consistent� we �rst outline the method we use� which is a direct adaptation
of �	�� The complete mathematical foundation can be found in earlier publications �	����� Assume
that we are interested in a function ��x� of a real variable x� Let perturbation theory give for this
function the perturbative approximations pk�x� with k " �� �� �� � � � � enumerating the approximation
order� De�ne the algebraic transform Fk�x� s� " xspk�x�� This transform changes the powers of the
series pk�x�� thus changing its convergence properties� As a result� the approximation order e�ectively
increases from k to k#s� The inverse transform is pk�x� " x�sFk�x� s�� De�ne the expansion function
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x " x�f� s� by the equation F��x� s� " f � where F� is the �rst available approximation and f is a new
variable� Substituting x�f� s� back to Fk� we get yk�f� s� " Fk�x�f� s�� s�� The transformation inverse
to the latter reads Fk�x� s� " yk�F��x� s�� s��

Consider the family fykg as a dynamical system in discrete time k� the order of the approximations�
The trajectory fyk�f� s�g of this dynamical system is� by construction� bijective to the approximation
sequence hfFk�x� s�g� This system can thus be called the approximation cascade� The next step is
to embed the discrete sequence fyk�f� s�g into a continuous sequence fy��� f� s�g with � � ���#��
Thus� the family fy��� f� s�  � � ���#�g composes a dynamical system with continuous time� whose
trajectory passes through all points of the approximation cascade trajectory� Such a system can thus
be called the approximation %ow� The evolution equation for a %ow can be presented in the functional
form y�� # � �� f� s� " y��� y�� �� f� s�� s�� We call this equation the self�similarity relation� which is the
central concept of our approach� In this framework� the motion occurs in the space of approximations�
where self�similarity is a necessary condition for convergence as a function of �time� de�ned as the
approximation number� The evolution equation for the approximation %ow can be rewritten in the
di�erential form and then integrated over time between k and some k�� The point k� is to be chosen
to provide the best approximation F �

k���x� s� " y�k�� F��x� s�� s� for the minimal time k� � k� The
cascade velocity vk�y� s� in the vicinity of the time k may be presented by the Euler discretization
of the %ow velocity giving vk�f� s� " Vk�x�f� s�� s�� with Vk�x�f� s�� s� " Fk���x� s� � Fk�x� s�� The
integral form of the evolution equation isZ F �k��

Fk

df

vk�f� s�
" k� � k� ���

where Fk " Fk�f� s� and F �
k�� " F �

k���x� s�� The approximation F �
k�� must be reached during the

minimal time� When no additional constraints are imposed� then the minimal time corresponds�
evidently� to one step k� " k # �� Finding F �

k �x� s� from ��� and using the inverse transform leads
to the self�similar approximation p�k�x� s� " x�sF �

k �x� s��
Now� by means of the substitution s � sk� we have to introduce control functions sk which

can govern the convergence of the sequence fp�k�x� sk�g� Following the standard procedure �	��
�� and similar to the steps described above� we may construct an approximation cascade with
its corresponding cascade velocity� Convergence of an approximation sequence is� in the language
of dynamical theory� the same as the existence of an attracting �xed point for the corresponding
approximation cascade� If the cascade trajectory tends to a �xed point� this means that the %ow
velocity goes to zero as �time� k goes to in�nity� In practice� we cannot� of course� reach the limit
k � �� and have to stop at a �nite �approximation order� k� Then� the condition to be as close to
a �xed point as possible is the minimum of the velocity�

After the control functions are found from the minimal�velocity condition� we substitute them into
p�k and obtain the �nal expression f�k " p�k�x� sk�x�� for the self�similar approximation of the sought
function� The practical way of using the minimal�velocity condition is to express it as a minimal
di�erence condition� To check whether the obtained sequence ff�k �x�g converges� we have to analyze
whether the corresponding mapping is contracting� The mapping related to the sequence ff�k g is
constructed in the standard way �	���� and the contraction� or stability� is analyzed by calculating
the mapping multipliers� Ref� �	� has shown how this method of algebraic self�similar renormalization
works to obtain accurate estimations of the critical behavior of a large variety of physical systems�
starting from virial�type or perturbation expansions containing only second�order terms and derived
for a region far from the critical point�

In the sequel� we translate this formalism to the case where x is now a real time� k is the order of the
polynomial �t to the early time of the signal which plays also the role of �time� for the dynamical %ow
in the functional space� The goal is to describe as accurately as possible the �nite�time singularity�
which is equivalent to a critical point in the time domain� Before investigating the predictive power
of our approach� we �rst investigate the possibility of reconstructing as faithfully as possible the time
evolution based on the knowledge of the singularity�
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�� Reconstruction of the crack dynamics from the knowledge of the small time
dynamics and the position of a �nite�time singularity

Here� we assume in addition that we know the position of the singularity at t " ��� and its
exponent� i�e�� that

f�t� "
�

���� t
for t� ��� � ���

Note that the amplitude A of the pole is exactly equal to �� We apply the Yukalov�Gluzman technique
in its version related to crossover phenomena �	����� to obtain the best approximation of f�t� for
arbitrary times based only on the knowledge ��� at small times and ��� at times close to rupture�

���� Using only fa�t� " � # a�t
� and ���

From the expansion fa�t� " � # a�t
�� the Yukalov�Gluzman method allows us to build the approx�

imant

f�� �t� "
h�

exp
�
a�t

�
��� �

� # bt	
i��

�

with two unknown parameters b and 	� to be determined solely by demanding the existence of a
crossover� The exponent 	 is determined from the condition that fa�t� " � # a�t

� must cross�over to
���� This gives 	 " � for the simple pole ���� The coe�cient b is obtained from the condition of a
pole at the known critical point tc " ���� which reads ��f��tc� " �� Solving for b� we �nally get the
�rst�order approximant

f�� �t� "

�
exp

��a�t��� t	

t	c
exp

��a�t�c�
���

� ���

This approximant gives an amplitude A� " ���	� for the simple pole� only ��� o� the exact value
A " �� Fig� � plots in logarithmic scale the relative errors between the approximant f� and the exact
expression �	� as a function of time t�

Fig� �� Relative error 9fexact:t;� f�i :t;< �fexact:t;�
for the three approximation formulas= :>; for f�� :t;�
:?; for f�� :t;� and :@B; for f�� :t;� where fexact:t; is
given by :H;�
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���� Using fa�t� " � # a�t
� # a�t

	 and ���

A similar procedure as in the previous case gives the second�order approximant

f�� �t� "

�
exp

�
�a�t� exp

�
a�
a�
t�
��

� t�

t�c
exp

�
�a�t�c exp

�
a�
a�
t�c

�����
� ���
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This second�order approximant can be improved by introducing an additional control parameter
� �optimal e�ective time k� � k� such that we can enforce the condition that the coe�cient a� is
preserved in the renormalization procedure� In other words� the expansion of f��t� is now imposed
to have the same coe�cient of its power t	� The expression ��� is thus modi�ed into

f�� �t� "

�
exp

�
�a�t� exp

�
a�
a�
� t�

��
� t�

t�c
exp

�
�a�t�c exp

�
a�
a�

� t�c

�����
� ���

The amplitude of the simple pole predicted by this approximant is found equal to ������ only ���
o� from the exact value �� The condition that the coe�cient of the power t	 in the expansion of ���
is equal to a� " ���� given by ��� leads to the improved second approximant of the form ��� with

� " �� a��
�a�

�

Fig� � plots in logarithmic scale the relative errors between the approximant f� and the exact
expression �	� as a function of time t�

���� Using fa�t� " � # a�t
� # a�t

	 # a
t
� and ���

An extension one step further in the Yukalov�Gluzman procedure gives

f�
 �t� "

��
exp

�
a�t

� exp

�
a�
a�
t��� exp

�
a

a�
t���

����� �
�

# a�t
�

	��
�

where the two control parameters �� and �� are to be determined from the condition that a� and a

are conserved by the renormalization� We �nd

�� " �� a��
�a�

and

�� " � �

a
��

�
a���

�
�

�a�
# a�a��� #

a
�
�
� a


�
�

The coe�cient a� is found from the condition on the critical point 

a� " � �

t�c
exp

�
�a�
	
t�c exp

�
a�
a�
t�c�� exp

�
a

a�
t�c��

���
�

The solution then reads

f�
 �t� "

�
exp

�
��

�
t� exp

�
�

�
t� exp

�
��

��
t�
���

� ���

�
t

tc

��

exp

�
��

�

�
exp

�
��

��
exp

�
����

���

���	��
�����

This approximant gives an amplitude A
 " ������ for the simple pole� only 	��� o� the exact value
A " �� The quality of the reconstruction of the full function �	� can also be checked by comparing
the exact value of the next term ���������� t� " ���	�	� t� in the expansion ��� of the function �	��
We �nd ���	���� t�� corresponding to an error of �����

Fig� � plots in logarithmic scale the relative errors between the approximants f�� � f�� and f�
 and
the exact expression �	��
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�� Prediction of the critical time from the knowledge of the small time dynamics

We now assume the knowledge of the expansion ��� up to some order� representing for instance the
experimental recording of an acoustic emission signal up to some stress level� In addition� we assume
only the existence of a singularity of the form ���tc� t�K at some value tc� using the insight from the
theory of critical rupture� but do not know a priori neither the position of tc� nor the value of the
exponent K� In other words� we assume that we know that the system is bound to break but we do
not know when and how� Our goal is to attempt to determine the critical time and the functional
form of the signal on the approach to the critical rupture time from the recording of the early signals�

���� Standard approach from Yukalov and Gluzman ��	


Consider an expansion of some function � in powers of some variable u given by

pk�u� "
kX

k�

bk u
k� with b� " ��

The method of algebraic self�similar renormalization �	��	� gives the following general recurrence
formula for the approximant of order k as a function of the expansion pk���u� up to order k � � 

��k�u� " pk���u�

�
�� k bk

s
uk p

k�s
k���u�

��s�k
�
�
p
�k�s
k�� �u�� k bk

s
uk
��s�k

� ����

where� generally speaking� s " sk�u�� depends on the approximation number and the variable u�
First� let us estimate the position of the critical point� Using only f��t� " � # a�t

�� we can write it
as the inverse of a function that is requested to vanish in order to obtain the singularity� Expanding in
powers of t up to �rst order in t� we get the estimation tc� "

p
� " ������ which should be compared

with the exact value ��� " ������ Including the next order from the expansion of cos�t��� leads to
the improved estimate tc� " �����

Let us now obtain the expansion which will be used as a raw material for renormalization� Including
the next order in f��t� " f��t� # a�t

	� inverting it� and expanding in powers of t up to t	�terms� we
obtain an expansion p��t� for ��f� 

p��t� "
�X

k�

bkt
�k

b� " �� b� " ����� b� " �����

Note that� in the initial series� all coe�cients in the expansion of cos�� are positive� giving the worst
possible case for resummation� In contrast� the coe�cients of the inverted series have alternating
signs� which may be better for resummation �	�� Hereafter� we apply the resummation procedure to
the function F � ��f inverse of f � Correspondingly� f� � ���F �� �

In order to determine the exponent K� we follow Yukalov and Gluzman �	� and construct the two
approximants available from the knowledge of the two coe�cients a� and a�� They can be readily
obtained from the general formula ����� with u " t�� The �rst order approximant is

F �
� �t� "

�
�� b�

s�
t�
��s�

� ����

Representing p��t� as p��t� " �#b�t
���#�b��b��t

��� and applying the general formula to the expression
in brackets� we obtain the second order approximant

F �
� �t� " � # b�t

�

�
�� b�

b�s�
t�
��s�

� ��	�
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Assume further that

s� " s� " s� ����

where s is a single control parameter� i�e� the limit of the total control function in the critical point�
which will play the role of the critical index K� As it was explained in �	�� such an assumption is
well justi�ed in the vicinity of a stable �xed point�

We impose the condition of the existence of a critical point� which delivers two equations for tc and
s 

F �
� �tc� s� " � and F �

� �tc� s� " �� ����

The condition of maximum stability of the renormalization amounts to imposing that the di�erence
F �
� � F �

� be a minimum with respect to the set of parameters� The minimization of the di�erence
is automatically satis�ed when ���� holds� since the di�erence reaches its smallest possible value�
namely zero�

The vanishing of F �
� given by ���� gives t�c " s�a�� The second condition F �

� " � with ��	� yields
the estimation s " ����� for the critical index� only ��� o� the true value equal to �� The critical
time is given numerically by tc " ������ very close to the exact value ��� " ������� Note that� as
is often found in critical phenomena� an error of less than �� in the location of the critical point is
associated with a much larger error of about ��� on the exponent� In the scheme presented above�
it was possible to �nd s and tc from separate equations�

Such convenience does not hold for another approximation scheme� presented below� which has
however other advantages such as simplicity� In order to separate the variables� we need an initial
guess either for s or for tc� Such an initial guess is provided naturally by the analog of a mean��eld
approximation�

���� Alternative approach� expansion around a �mean�eld� approximation

Expansion to the same order as above� An alternative and more transparent approach is
�rst to minimize the distance between approximants and then to verify that ���� holds� This is
the reverse order to the previous scheme that solves ���� which then automatically ensures that the
distance between the two successive approximant is minimized�

In practice� this is implemented as follows� From ����� we see that the critical point is located at
t�c " s�b�� i�e�� s " b�t

�
c � Using only

p��t� " � # b�t
��

we estimate t�c " ���b�� which then yields s " ��� Note that this value �� for the exponent always
holds for any value of b�� This exponent thus plays a role analog to a mean��eld approximation in
statistical physics� The fact that the exponent is in the present case equal to the exact value is a
mere coincidence�

In the next order�

p��t� " � # b�t
� # b�t

	�

The two approximants can be derived directly from the general formulas 

F �
� �t� "

�
�� b�

s�
t�
��s�

�

F �
� �t� "

��
� # b�t

�
����s� � �b�

s�
t	
��s���

�



������
 � ��� ��
����������� ����
��� �	�

We assume in addition that

s� "
s�
�

" s� ����

thus eliminating a trivial dependence of the control parameter s on the approximation number k� Note
that ���� is di�erent from ���� because we use a di�erent sequence of approximations f�� f�� � � � � In
particular� the condition ���� ensures that F �

� �t� and F �
� �t� have the same exponent&control parameter�

In constrast with the previous method of section ���� we �rst minimize the di�erence F �
� �t� s� �

F �
� �t� s�� and then verify that ���� holds� The di�erence calculated at the �mean��eld� threshold

t�� " ���b� gives

D��s� "

�
� # s

s

��s
�
��b�
b�� s

��s
�

which is exactly zero at

s " ��� b�
b��

" �������

The position of the critical point tc can be recalculated from the condition F �
� �tc� s� " �� which has

a nontrivial solution at

tc "

r
s

b�
"

r��

b�

s
� #

b�
b��

" ������

Expanding in powers of b��b
�
�� we estimate tc �

p
���b��� # b���b��� " ���	��

Thus� the renormalization scheme used to calculate tc and K corresponds to an expansion around
the mean �eld value t�c " ��b� and K " � in inverse powers of the dimensionless �Froude� number
b���b� �see ��� for a de�nition and use of the Froude number in this context of functional renormal�
ization�� In summary� we get the predictions tc " ����� closer to the exact value ��� " ������� and
the critical exponent K " ������

Higherorder expansion� Including the next order in f
�t� " f��t� # a
t
�� inverting it� and

expanding in powers of t up to t��terms� we obtain an expansion p
�t� for ��f
 

p
�t� "

X

k�

bkt
�k�

with

b� " ����� b� " ����� b
 " �������

The two higher�order approximants can be written as follows 

F �
� �t� s�� "

��
� # b�t

�
����s� � � b�

s�
t	
��s���

�

F �

 �t� s
� "

��
� # b�t

� # b�t
	
��
�s� � 	 b


s

t�
��s��
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Assume that

s�
�

"
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The di�erence F �

 �t� s�� F �

� �t� s� calculated at the �mean��eld� critical point t�� " ���b� gives

D��s� "

��
b�
b��

����s
� b


s

�
� �

b�

�

	�s

�
��b�
b�� s

��s
�

which has a zero at s " ������� The position of the critical point tc can be recalculated from
the condition ��f�
 �tc� s� " �� which has a non�trivial solution at tc " ������ determined from the
equation

�
� # b�t

�
c # b�t

	
c

���s � b

s
t�c " � �s " ������� �

which wins over the �trivial solution� of � # b�t
� # b�t

	 " � at ������ Note that at order �� from the
condition F �

� �tc� s� " �� we could only �nd the trivial solution t�c " ��b�� It is only at higher order�
starting with the order 	 discussed here� that we get corrections to the �mean��eld� approximation�

To test the validity of the expansion and the strength of the corrections to the mean��eld approx�
imation� let us represent s as s " �� # X � substitute it into equation D��s� " �� and expand in
powers of X � thus assuming that X is small compared to ��� Keeping only terms linear in X � X can
be expressed as follows 

X " � b

b�b�

�

�� ln�b��b���
�

Such an expansion is justi�ed only when b
��b�b��� � and �� ln�b��b��� is signi�cantly di�erent from
zero� In our case� b
��b�b�� " ������ �� ln�b��b

�
�� " ����� and thus X " ������ is small as expected�

Similarly� let us represent t�c as t�c " ���b� # C� substitute it into the equation F �

 �tc� s� " �� and

expand in powers of C� thus assuming that C is small compared to ���b�� Keeping only the terms
linear in C� we get C " ������ which leads to the value of the critical point tc " ����� �close to
�������� The expression for C has a simpler structure at the mean��eld point s " �� 

C " � �

b�

�
b


b� b�
� �

�
�

�� 	 b�
b� b�

� b��
b�

�

with an estimate for the critical time given by

tc �
r
� �

b�

vuut� #

�
b

b�b�

� �

�
�

�� 	 b�
b� b�

� b��
b�

" ����	�

Thus� the renormalization scheme used to calculate tc and K corresponds to an expansion around
the mean �eld value tc " ��b� and K " �� in powers of two dimensionless parameters b
��b�b�� and
b��b

�
��

In summary� we get the predictions tc " ������ very close to the exact value ��� " ������ and
K " ����� only �� o� the exact value ��

We conclude that the applicability of the scheme presented in this section crucially depends on the
existence of typical small parameters� while the original scheme of �� does not have such a dependence
and can be applied even if critical indices deviate strongly from the mean��eld values�

�� Synthetic tests in the presence of noise

Fig� � shows one realization of a synthetic noisy data obtained from �	� with a multiplicative noise
of variance ����� This noisy data simulates an experiment recording a signal as a function of time
or of increasing strain or stress� Our goal is to use this noisy time series up to a maximum value
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away from tc to guess using the functional renormalization method what is the critical value tc of
divergence �theoretically equal to ��� " ���������

Fig� �� Noisy data obtained from :H; with a multi�
plicative noise of variance @B��� The goal is to use
this noisy time series up to a maximum value away
from tc to guess what is the critical value tc of diver�
gence :theoretically equal to ��� J @�K>���;�
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Fig� 	 shows the inverse of the function in Fig� �� as well as four other realizations� which are used
in the functional renormalization scheme developed in the previous sections to predict tc� The �ve
di�erent symbols shown in Fig� 	 correspond each to a single time series for a speci�c noise realization�
The spread around the theoretical cos t formula gives a sense of the amplitude of the multiplicative
noise�
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Fig� �� The inverse of the function shown in Fig� � as well as four other realizations� which are used in the
functional renormalization scheme developed here to predict tc� The Ove diQerent symbols shown in the Ogure
correspond each to a single time series for a speciOc noise realization� The spread around the theoretical cos t
formula gives a sense of the amplitude of the multiplicative noise�
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Fig� � compares the prediction skill of our procedure described in section ��� to that from a direct
�t with a power law� using the standard least�square �t method applied to the data without any
pre�treatment� Speci�cally� we plot the predicted value for the critical time tc as a function of the
distance to tc� obtained with the two schemes� In this goal� we generated ����� synthetic data sets
using expression �	� and modifying it with a multiplicative noise of variance ���
 corresponding to a
standard deviation of 	�	�� i�e�� with the equation fi�t� " �� # 
� cos t� where 
 is a Gaussian white
noise with variance ���
� To generate curve a� in Fig� �� each data set was �tted by the power law
equation A�tc � t��� � with 	 " � �xed and A and tc determined from the �t in the time interval
����'Tlastpoint� The thick line is the average tc taken over the ����� realizations and the two thin
lines are the 	 one standard deviations� The curve b� in Fig� � is the predicted tc obtained from our
resummation technique given in section ��� which assumes that the exponent 	 is close to �� using
the coe�cients b� and b� of the �t with the expansion � # b�t

� # b�t
	 to the inverse of each of the

synthetic data set fi�t�� The thick line is the average predicted tc and the two thin lines are the 	
one standard deviations� The horizontal line at tc " ��� is the exact theoretical value for the critical
time� Up to very close to the critical time� our resummation method is clearly superior to the power
law �t� even when knowing a priori the value of the exponent�
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Fig� �� The predicted value for the critical time tc as a function of the distance to tc� obtained with diQerent schemes�
in order to evaluate the value of the resummation procedures proposed here� In this goal� @�BBB synthetic data sets
were generated using expression :H; and modifying it with a multiplicative noise of variance @B�� corresponding to a
standard deviation of H�HV� i�e�� with the equation fi:t; J 9@X�<� cos t� where � is a Gaussian white noise with variance
@B��� To generate curve a;� each data set was Otted by the power law equation A:tc � t;�� � with � J @ Oxed and A
and tc determined from the Ot in the time interval 9B�KZTlastpoint <� The thick line is the average tc taken over the @�BBB
realizations and the two thin lines are the � one standard deviations� The curve b; is the predicted tc obtained from
our resummation technique given in section [�� which assumes that the exponent � is close to @� using the coe	cients
b� and b� of the Ot with the expansion @Xb�t

�Xb�t
� to the inverse of each of the synthetic data set fi:t;� The thick line

is the average predicted tc and the two thin lines are the � one standard deviations� The horizontal line at tc J ���
is the exact theoretical value for the critical time� Up to very close to the critical time� our resummation method is
clearly superior to the power law Ot� even when knowing a priori the value of the exponent�

Fig� � compares the prediction skill of the Yukalov�Gluzman method used in section ��� to that of
a direct power law �t� Again� ����� synthetic time series were generated with multiplicative noise
of variance ���
� The curve a� of Fig� � is obtained by using the general resummation method of
section ��� which does not assume any speci�c value of the exponent 	� We �rst �t the inverse of
each synthetic data set with a parabolic expression � # b�t

� # b�t
	 and use these coe�cients b� and

b� to obtain our prediction tc� The two thin lines are the 	 one standard deviations� The curve b�
in Fig� � is obtained by �tting each data set by the power law equation A�tc � t��� � where A� 	 and
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tc are all three free parameters determined from the �t in the time interval ����'Tlastpoint� The thick
line is the average tc taken over the ����� realizations and the two thin lines are the 	 one standard
deviations� The horizontal line at tc " ��� is the exact theoretical value for the critical time� Note
the striking superiority of our resummation method over a direct power law �t�
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Fig� �� Same as Fig� [ with @�BBB synthetic time series with multiplicative noise of variance @B��� and with diQerent
prediction schemes� The curve a; is obtained by using the general resummation method of section [�@ which does
not assume any speciOc value of the exponent �� We Orst Ot the inverse of each synthetic data set with a parabolic
expression @ X b�t

� X b�t
� and use these coe	cients b� and b� to obtain our prediction tc� The two thin lines are the

� one standard deviations� The curve b; is obtained by Otting each data set by the power law equation A:tc � t;�� �
where A� � and tc are all three free parameters determined from the Ot in the time interval 9B�KZTlastpoint <� The thick
line is the average tc taken over the @�BBB realizations and the two thin lines are the � one standard deviations� The
horizontal line at tc J ��� is the exact theoretical value for the critical time� Note the striking superiority of our
resummation method over a direct power law Ot�

Fig� � is the same as Fig� � but with a larger multiplicative noise of variance ����� Fig� � is the
same as Fig� � but with a larger multiplicative noise of variance �����
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Fig� �� Same as Fig� [ but with a multiplicative noise
of variance @B���

Fig� 	� Same as Fig� K but with a multiplicative noise
of variance @B���
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	� Concluding remarks

We have tested two methods for the prediction of the critical time of a singular power law behavior
and tested their prediction skills against the direct determination by a power law �t� Our analysis
and the numerical tests convincingly demonstrate the value of our approach which provides signi�cant
improved forecasting skills� Our tests have however been restricted to a an important from a physical
viewpoint but still special case of a function which admits an expansion with only even powers of t�
The most general situation contains also odd powers of t which complicates the situation� We intend
to report progress in this general case in a forthcoming publication�

Finally� we wish to comment upon a conceptual understanding of the role of the exponent s used as
control functions in the functional renormalization schemes used here� Yukalov and Gluzman �	� �rst
noticed that their functional renormalization frameworks allowed them to propose a novel physical
understanding of critical exponents as being directly related to limits of control functions at the
critical point� In other words� they appear as physical analogs of the rather abstract mathematical
objects given by the control functions� A scale invariant formulation using logarithmic variables allows
us to understand this rather surprising observation critical exponents can be seen to be determined
by the initial conditions of an operator of the group of the symmetry of scale invariance ���� Indeed�
a power law function ��r� of the distance r � tc � t to the critical point� has the property of scale
invariance which reads

���r� " ����r�� ����

where � is an arbitrary magni�cation factor and � is a critical exponent� This equation means that
the �eld ��r� is invariant under the homothetic mapping r � �r' � � ���� Expression ���� can
be transformed by picking up an arbitrary reference �eld �� and an arbitrary reference parameter r�
and introducing the log�variables U " ln������� s " r�r�� U��� " ln ���r������ � U�s�� U��� " �s�
In these variables� equation ���� can also be written 

U�s� " U�s # �� # g���� ����

g��� " U���� U���� for any ��

Reciprocally� any regular function obeying ���� is necessarily of the shape U�s�� U��� " �s� where

� " U���� U���

is an arbitrary parameter selected by the initial conditions$ The message here is not that a power�
like function ���� is determined by its values at two arbitrary points� which is obvious� but that an
exponent � can be seen as a boundary condition in the log�variables� Since boundary conditions are
usually the place where forces&controls can be applied� we believe that this sheds some light on the
status of critical exponents identi�ed by Yukalov and Gluzmann as limits of control functions�
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