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The gravitational instability of a rheologically stratified system is analyzed in a situation when
a buoyant fluid is overlain by a dense perfectly plastic layer and underlain by an infinitely deep
layer of a non-Newtonian power-law fluid. The system is subject to depth-dependent horizontal
extension or compression. The growth rate of small perturbations versus wavenumber is found in
analytical terms. Effects of the viscosity and thickness ratios between the two layers are assessed.
The following results are obtained for the case where the viscosity of the buoyant layer is much
less than the effective viscosity of surroundings. In contrast to the case of purely viscous layered
system, the dominant wavelength of the most unstable mode decreases with increasing thickness
of the upper layer. The instability pattern is similar to that of perfectly plastic material. The
buckling instability induced by a rapid horizontal straining overwhelms the gravitational instability,
and then the growth rate of perturbations depends linearly on the viscosity ratio. The compression
of the lower layer reduces the growth rate of the perturbations over a range of wavelengths, and
the dominant wavelength becomes longer with increasing compression. The applicability of the
analytical results to the problems of salt tectonics is discussed.
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MucturyT Teopetndeckon reodusnkn, KeMGpumpKCKui yHUBepcUTET, AHMINAA

PaCCManI/IBaeTCﬂ TpaBHTAIIOHHAL HeyCTOI/I‘II/IBOCTb peosorutdeckn CcTpaTUuUIMPOBAHHON CH-
CTEMBI, B KOTOPOU BA3KUU CJOU MMOHUXKEHHOU TIOTHOCTH TIEPEKPHIT GoJiee BABKUM HACATHHO ILIa-
CTUYECKUM CJIOEM U HAXOAUTCA HA TOIYyIPOCTPAHCTBE HEHHIOTOHOBCKOHM CTEMEHHOU XKuAKocTH. Pa
DTY CHUCTEMY HEUCTBYET TI'OPU3OHTAILHOE PACTSIKEHUE WIH CXKATHE, U3MEHSAOUIEECH C TIYOUHOM.
Pamgenbl anamnruteckue BHIpaxkeHns CKOPOCTH POCTA MATHX BO3MYIIEHUN B 3aBUCUMOCTH OT BOJI-
HoBoTO [ncia. VccaenoBansr 3pPeKTH, CBA3aHHBIE C N3MEHEHNEM KOHTPACTA BA3KOCTHU U TOMIITHHBI
cioeB. PaccmarpuBaeTcs ciaydan, KOrja BA3KOCTDb JEMKOI'O CJOSI MHOI'O MeHbIIe 3(hPeKTUBHON B3~
KOCTHU APYTHUX CIO€B. B MPOTUBOMOIOKHOCTE CAYYAK HGHCTO BA3KNX CJIOEB, BOJTHOBOE HHCIO MaK-
CUMAJIBHO HECTAOUIBLHOU MOJB YORBAET C BO3pACTAHUEM TOIIIMHBI BEpXHEro cios. KapTuHa He-
YCTOMHMHUBOCTHU AHANOTMYHA CIY9AI0, KOa cpeja nealbHO IIACTIYHA. WNarutuas HeyCTOIU/I‘II/IBOCTb
BO3HHKAIOLIAA [IPI 6BICTPON MOPU3OHTAIBHON jeOpMAaIIii, npeo6ﬂa;{aeT Ha [l "PABUTAIIMOHHON He-
YCTOMHMUBOCTHIO, U B DTOM CAyHYae CKOPOCTb POCTA BO3MYUICHUI JII/IHeI/IHO 3aBUCAT OT KOHTpacTa
BABKOCTH. PpPHU CXRATHU HUKHETO CIOSA CKOPOCTH POCTA BO3MYIIEHWUI YMEHBINAETCS B HEKOTOPOM
[IMATIAa30HE BOJHOBBIX HMCEN, a MPU YBEIUYEHUN CKATUA IIMHA BOJHBI MAKCUMAJILHOU MOJBI BO3-
pactaer. O6CyXKIAIOTCA NMPUIOKEHUA AHAIUTUYECKUX PE3yIbTATOB paboTHl K 3aadaM COJITHOU
TeKTOHUKH.
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Introduction

The rheology of sedimentary rocks is quite complex: their properties depend on temperature,
composition, pore fluid pressure, and other factors. Because the effective viscosity of the uppermost
brittle sediments is rather high, the deformations of rocks are not controlled by dislocation creep
and are determined instead by motions of sedimentary blocks along pre-existing faults of various
orientations. The dynamic friction at faults depends only very weakly on the strain rate, and such
a physical mechanism of deformation is most naturally modeled by the rheology of a strongly non-
Newtonian power-law fluid or even perfectly plastic material which does not exhibit work-hardening
but flows plastically under constant stress [1].

The gravitational and buckling instabilities are crucial in the evolution of geological structures.
The gravitational instability is associated with variations in density due to chemical or thermal het-
erogeneities. The buckling instability arises from variations of viscosity under the action of an applied
stress. These two kinds of instability finally determine whether disturbances will grow or decay in
layered structures. When rocksalt is buried under clastic deposits in sedimentary basins, the com-
pacting overburden becomes denser in time than the rocksalt. Salt can then rise through the overlying
sedimentary layer to form diapirs [2]. Studies of natural diapirs have benefited from theoretical anal-
yses. Biot [3], Biot and Odé [4], and Ramberg [5] developed a theory of gravitational instability of
layered geological media under compression. Schmeling [6] demonstrated how the dominant (but not
necessarily characteristic) wavelength and the geometry of the gravity overturns are influenced by
the shape of the initial perturbation. Poliakov et al. [7] and Naimark et al. [8] studied numerically
the effects of differential loading of sediments on diapirism. In the studies mentioned the layered
geological structures were modeled as systems of viscous layers.

We analyze the gravitational instability of a rheologically stratified geological structure under
compression or extension and try to explain some features of salt diapiris observed in the sedimentary
basin, for example, the non-uniform distribution of diapirs and the reduction of interdiapir spacings.
This is in line with recent advances in salt tectonics, which highlight the role of horizontal stretching
or squeezing of a brittle overburden in the formation of salt structures [9,10].

Several analytical investigations have been performed to find the differences in growth rates be-
tween the instability of Newtonian and non-Newtonian fluids under finite-amplitude compression and
extension [11-17]. However these studies either have not addressed the problem of the instability
due to density inversion or have not evaluated the features of the instability of rheologically stratified
material to determine all implications.

1. Equations of motion and boundary conditions

We study the gravitational instability of a three-layered structure (Fig.1): a perfectly plastic layer
of the effective viscosity 17 and density p; in 0 < z < hy overlays a viscous layer of the viscosity 7
and density pg in —hy < z < 0; both layers rest on an infinitely deep layer filled by a non-Newtonian
power-law fluid of the effective viscosity 73 and density ps. Hereinafter subscripts 1, 2, and 3 refer
to the upper, middle, and lower layers, respectively. The governing equations are represented by the
equations of momentum, rheology, continuity, and density advection (see e.g., [18]). Motivated by
the extremely large viscosities of geological fluids, we assume that inertial terms in the Navier-Stokes
equations are negligible and that the motion is governed by the Stokes equations. In general, the stress
tensor 7;; and strain rate tensor €;; satisfy the non-Newtonian power-law fluid relation ;; = Cél_Tnéij,
where the constant C'is defined from thermodynamical conditions, n is the power-law exponent, and
£ = (éklékl)l/Q is the second invariant of the strain rate.

The structure is subject to layer-parallel extension (or compression) with horizontal strain rates
€72 = 71 (or —71) in the upper layer and £,,, = 72 (or —73) in the lower layer, where v; and 7, are
constants. Incompressibility implies that ., = —£,,. The remaining component of the strain rate
tensor £,, = 0 for the background pure shear flow.
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Fig. 1. A sketch of the rheologically layered structure model.

A small sinusoidal perturbation is prescribed to the interfaces of the layers. m and p1, 2 and p2, and ns and ps
are the effective viscosity and density of the upper, middle, and lower layers respectively. The layers are subject to
horizontal extension or compression of different magnitudes (solid and dashed arrows)

In order to obtain the equations governing the small perturbations of physical variables, we neglect
all products and powers of the perturbations and retain only linear terms. We introduce small
perturbations of pressure (§P), density (dp), components of velocity v (u and w), stress tensor, 07;;,
and strain-rate tensor (¢;;). The equations take the form

a5P 267,

_ SpF, =0, |
8$]‘ + awj + P 0 ( )
At _nde o (ou ow
0Tea = 2n oz’ 072x = 2n 0z’ 07wz =1] (82 + oz )’ 2)
divy = 0, (3)
ddp dp
R P W

where 4,7 =z, z; F; = (0, —¢); and 7 is the effective viscosity defined to be 0.5051_771. Equation (2)
represents the anisotropic stress—strain rate relationships in the case of the non-Newtonian power-law
rheology (e.g., [11]).

The conditions at the upper boundary z = hy are stress-free and obtained from the absence of
tangential and normal stress

0
57—1’2,1 = 5'901’,18_57 (5)
_5P1 + 57—22,1 + PlgC = 07 (6)

where 6,,1 = 4m€40,1 = 4117y is the component of stress tensor for the basic background flow [12],
and ( is the vertical displacement of the upper boundary defined by 0¢/0t = w;.

At the interfaces between the upper and middle layers (z = 0) and the middle and lower layers
(z = —hg), we require continuity of velocity, tangential and normal stress accounting for forces due
to the density and viscosity discontinuities at the interface
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Ui = Uigpr, W = Witd, (7)

_ _ 3
5sz,i - 5sz,i—l—1 = (Uamc,i - O-xx,i—l—l)a_é;v (8)
—0P; + 0P+ 67 — 0Tezit1 — (Pit1 — pi)9& = 0. 9)

where 0¢;/0t = w; = w;4q and ¢ = 1, 2. Equations (5) and (8) include the driving mechanism for the
background flow induced by extension or compression, while the last term in (6) and (9) provides the
motion of the layered structure due to density discontinuity.

Analyzing the disturbance into normal modes, we use the Laplace-Fourier transform with the kernel
exp(ikz + pt), where k is the wavenumber and p is the growth rate of the perturbations. The stability
problem then reduces to the analysis of variable p as a function of k. If all p have negative real part
for all k, then the system of layers is stable; the system is unstable if there exist p with a positive
real part for some range of k. For solutions having this dependence on z and ¢, (1)—(4) become

kP = — 2142y + D[n(Du + ikw)), (10)
n
DSP = ik[(Du + ikw)] + D (2—”Dw) — gip, (11)
n
iku + Dw = 0, (12)
pdp = —wDp, (13)

where D = d/dz. We multiply (10) by ik, use (12) and combine (11) and (13) to obtain
“126P = 21i2Dw — D(D? + K2)wl, (14)
n

27 D
DéP = —p(D*+E*)w+D (—"Dw) + 222y, (15)
n p

Eliminating § P between (14) and (15), we obtain

7 D
(D2 + %) (7(D? + k) w) — 4°D (LDw) - L2 = 0. (16)
n P
We assume the density and viscosity to be constant within each layer. Then (16) becomes

42

{(D2 + k*)? — 7D2} w = 0. (17)

The general solution to (17) is the linear combination

w = Agexp(kf1z) + Bz exp(kfaz) + Czexp(kfsz) + Dsexp(kfsz), (18)

where Az, B3, ('3, and D3 are constants and

1

132
2 2(1 —
ﬁj:i{——liiw} (j=1,2,3,4).
n n

In the case of a Newtonian fluid (n = 1) (17) becomes
(D? = k*)*w =0 (19)
with the general solution

w = Ag cosh kz 4+ By sinh kz + Cyz cosh kz + Dz sinh kz, (20)
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where Ay, By, C5, and D5 are constants.
In a case of a perfectly plastic medium (n = o0o) (17) becomes

(D? + k*)*w =0 (21)
with the general solution
w=Ajcoskz+ Bisinkz+ Cizcoskz + Dyzsinkz, (22)

where A,, By,C4, and Dy are constants.
Boundary conditions (5)—(9) are represented in the form:

4~ k2
(D2—|—k2— 7 )wlzo, (23)
p
1 P19
(D + 5 D7 - m_p) wy =0, (24)
w1, = Wy, le = ]:)11)27 (25)
Ay k2
(D? 4+ K2)w; = (D% 4 k)wy + —2 (1 = Ly, (26)
mn P mn
_ (iDB T D) wy + @ (iDB _ 3D) wy = sz (27)
k2 m \ k2 mp ’
Wy = W3, Dw2 = ]:)11)37 (28)
2k?
(D2 4 k2w, = (D? 4+ k) ws + — (1122 — ) ws, (29)
3 P 3
m (1.4 1 4 1 (p3 — p2)yg
~2({=D*-3D —D*— =D = s,
" (k2 3 ) wy + (k2 3 ws D ws (30)

2. Linear analysis

Equations (21) for the upper layer, (19) for the middle layer, and (17) for the lower layer (n = 3)
with boundary conditions (23)—(30) make the boundary value problem for the eigenvalue p and
eigenfunction w.. The conditions of no flow as z — —oo reduce solution (18) of equation (17) to the
form

w = exp(kaz)(Ascos kbz 4+ Bssin kbz), (31)
a:cosf7 b = sin f,
2 2
Substituting solutions (20), (22), and (31) into the boundary conditions, we obtain a system of ten
linear algebraic equations for ten constants Ay, By, Cj, and D; (k= 1,2,3,1 = 1,2). Zeros of the
determinant, of this linear system are eigenvalues of the boundary value problem.
We introduce the following dimensionless quantities (¢ = 1,2,3, 7 =1,2)

¢ = arccos(—1/3).

a; = mi/(m+m), c=pi/(p1+p2),
v = m/m=a/ar, v =m/n3 = az/as,

di = hj/(hi+h2), q=k(hi+ha), w;=qd;=kh;,
(p1+ p2)g(h1 + ha)to
2(m + n2)
g1 = fC1d1/a17 Go1 = 7(02 - C1)d2/a17 U3y = 7(03 - Cz)dz/a:a-

After some manipulation, we deduce that a nontrivial solution to the above linear algebraic equa-
tions exists when

A = pto7 7]:27]&)7 .7::

9

det(p;;) =0 (32)

where
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g _ Y _
pir = A (% tana; + ’711/1) +7 (%(901 — tanay) +71(1 — v1)a; tan 961) ;
2 2

pi2 = vi(Mizi+ (A —1) tanay), piz =7 tanzy, pig = vi(T12; tanz; — A),
G _
P21 = A (%$1+g1+71(1—1/1)961 tan xy
2
Ga1 _
+ G x—(xl — tanzy)+31(1 — v1)xy tanay |,
2
p22 = vi((Gi+ N)xy — Gy tanzy), pes = Gy tanzy,
pa = vi(Gr+A)zytanzy, pis = pie = p2s = p2s = 0,
p31 = coshag — wosinh g, p3g = —sinh xg 4+ x5 cosh x5,
p33 = —wxgcoshwy, p3g=wxgsinhay, p3s=1, p3e=0,
Py = @gcoshzy, pyo = —xosinh xy, pys = cosh o + 29 sinh zg,
paa = —(sinhag+ wycoshay), pss=a, pis=—b,
ps1 = —wpxgsinhxy,  psy = vowgcosh ag,
pss = —rva(sinh ag + zgcoshxz), psa = va(cosh xy + zgsinh x3),
1 1, _

P55 = 5(02 —0'—1)+ X(Vz’h —Y2), Pse¢ = —ab,
per = —rva(sinhay — zgcoshay), psy = va2(cosh xy — zgsinh x3),
pe3 = rowgsinh @y, pgy = —roxgcosh xg,

1 1 G32 1 1

— Ca(a® 3oy 4 22 — Sh(3a® — b2 — ).

Dss 2@(0 3)+x2A’ Pes = 3 (3a 3)

Equation (32) is a cubic polynomial with respect to the growth rate A associated with the induced
background flow and a flow due to density discontinuity. We do not present here the coeflicients of the
polynomial for the lack of space. We find roots of the cubic polynomial from the Cardano formula.
We consider the maximum positive root for A, that is, the least stable root. It should be noted that
signs of two roots of (32) may exchange for some values of ¢, vy, vo, ¥1, and 7,.

To illustrate the results, we take the following values of the model parameters: hy 4+ hy = 10 km;
g1+ po =2 x 10%2° Pas; p; = 2.5 x 10° kg m™2, py = 2.2 x 10® kg m ™2, and p3 = 2.7 x 10® kg m~?;
to = 3 x 10" s. These values model rocksalt overlain by a sedimentary overburden and underlain by
a subsalt layer.

First, we analyze the case when the horizontal background strain rates, 41 and 3, are small to
inhibit the development of the buckling instability. We find that 75 = 107° is a reasonable value
of the background strain rate in this case. For such small values of the strain rate gravity effects
dominate in the instability of the layered structure. When ¢; > ¢2 and both 47 < 49 and 3 < 7o,
at least one of the roots of (32) is positive for all ¢. Fig.2 illustrates the curves of the growth rate
versus wavenumber for various values of effective viscosity ratio v.

1E+1
1E+0
1E-1
2 1E-2 Fig. 2. The growth rate versus wavenumber for var-
= ious values of the effective viscosity ratio, v1: 1(a),
£ 1E3 0.1(b), 1072 (c), 1072 (d), and 107* (e), at d1 /d> = 1,
§,) 1 —cy = 006, cg —ca = 0.1, o = 10_47 and
1E-4 = = -7
Y1 = Y2 = 10 .
1E-5
1E-6

0 10 20 30 40 50
wavenumber
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We see that the smaller effective viscosity ratio, the higher a positive growth rate and the larger
an amplitude of the curve waviness. The waviness of growth rate curves is due to the fact that the
perturbation equation for perfectly plastic material is a hyperbolic wave equation and the vertical
velocity structure w(z) is oscillatory.

The dominant wavenumber initially decreases with increasing thickness ratio but then increases
again by a series of abrupt jumps (Fig. 3, left panel). This behavior is associated with the waviness
of the growth rate curve and hence is due to the non-Newtonian rheology of the upper and lower
layers. It occurs when the second, third and so on peaks of the growth rate curve becomes higher
than the surrounding peaks. The maximum growth rate initially increases with increasing thickness
ratio; however, it decreases steadily for larger thickness ratio (Fig.3, right panel).

35 — 1E-1 =
30 ]
= o 1E-2 o
s 25 © E
£ = ]
2 20 s 1
2 ° 1E-3 =
g 15 i g
= = ]
£ 10 £ 1e4 <
£ © e
S 5 E ]
0 \\\\\H‘ \\\\\H‘ 1E‘5 \\\HH‘ \\\\\H‘
0.1 1.0 10.0 0.1 1.0 10.0
thickness ratio thickness ratio

Fig.3. The dominant wavenumber (left panel) and maximum growth rate (right panel) versus the thickness
ratio, di/da, for various values of the effective viscosity ratio, v1: 1 (a), 0.1 (b), and 1072 (c), at ¢; — c2 = 0.06,
cs—c2=0.1,,=10"% and 51 = 7, = 107"

Fig.4 illustrates growth rate curves for both horizontal extension (curves a-d) and compression
(curves e-h) of the upper layer while the background strain rate 72 < %y. It shows the growth rates to
be positive for small values of background strain rate ¥; and to become either positive or negative for
larger 4. The maximum growth rate increases in amplitude with increasing background strain rate
~1, while the other sinusoidal peaks of the growth rate curves increase faster and become dominant.
At large background strain rates (y,>107°) the model tends to a”resonance” behaviour marked by
sinusoidal growth rate curves and by a linear dependence of the rate on effective viscosity ratio [13].

0.05 — 0.05
0.04 — 0.04 —
0.03 0.03
0.02 0.02
o 001 — 0.01
© 0.00 — 0.00 —
< m 4 \
S -0.01 — -0.01 i
° ) 1 \
>  -0.02 -0.02 | ‘.
-0.03 — -0.03 — |
0.04 | -0.04 ':
- P — 1
0.0 I \ \ -0.05 T \ \ \
0 5 10 15 20 0 5 10 15 20
wavenumber wavenumber

Fig.4. The growth rate versus wavenumber for various values of the basic background strain rate 7;.
For extension: 1077 (a), 107°(b), 107°(c), 107*(d); for compression: —107" (e), —107° (f), —107° (g),
—107*(h), all at dy /d2 =1, ¢1 — 2 = 0.06, ca — ¢ = 0.1, o = 107* and 72 = 1077
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Curves in Fig.5 show how the maximum growth rate depends on horizontal extension or compres-
sion of the lower layer at 41 < 9 and v; = vy = 0.1. At small wavenumbers (or at long wavelengths)
the growth rate is seen to fall down with decreasing strain rate ¥,. Large compression of the lower
layer retards the growth of perturbations for wavenumbers less than 6 and finally results in a negative
growth rate at some interval of wavenumbers ranged from about 1 to 4 and increasing growth rate
for wavenumbers less than about 1. It was also found that changes in 42 have little effect on the
growth rate curves for large wavenumbers. If the effective viscosity ratios 1y and vy are sufficiently
small, much larger compression of the lower layer (than that in the case of v; = v = 0.1) is required
to shift the dominant wavenumber to small values.

5E-3 —
4E-3
3E-3 — a
| Fig.5. The growth rate versus wavenumber for
% ,b,\\ various values of the basic background strain
S 2E3 e rate, 32: 1072 (a), 5x 1077 (b), 1077 (c), —1072
= 14 /7 6, (d), —2x 1072 (e),at vy =2 = 0.1, dy /d2 = 1,
2 o / SN c1 —c2 =006, ca—cz = 0.1, and 7, = 1077,
()] 1E 3 7 / . . .
4 /e Asterisks show points of sign exchange between
1% / * two roots of Eq.(32)
0E+0 A
A7
-1E-3 N B \ \ \
0 2 4 6 8 10
wavenumber

The results of the analytical study show that when the viscosity of the middle layer is less than
the effective viscosity of surroundings, the instability of the structure under compression or extension
is similar to the instability of perfectly plastic material manifested as oscillations of the growth rate
curves and a linear dependence of the growth rates on effective viscosity ratio.

Discussion and conclusions

We studied the gravitational instability of a rheologically layered structure under compression or
extension and analyzed the growth rates and dominant wavelengths of the perturbations generated
in the structure. During a deposition of sediments the thickness of the salt overburden grows with
respect to the initial thickness of the salt layer. Assuming the sedimentation to be rapid compared
to the timescale of diapirism, the distance between the crests of two neighboring diapirs is defined by
the dominant wavelength. The analytical results show that the dominant wavelength is short when
the overburden is rather thin. Initially it becomes longer with increasing thickness of the overburden
but then reduces when the thickness of the overburden becomes greater than the thickness of the
salt layer. Such a reduction of the dominant wavelength can explain the surprisingly small distance
between salt diapirs in some sedimentary basins (for example, in the Great Kavir in Iran, see [19]).

The extension of sedimentary layers containing salt results in the thinning of a brittle overburden, its
faulting, and the activation of salt diapirs (e.g., [20]). We showed that the buckling instability replaces
the gravitational instability for rather rapid horizontal stretching or squeezing of the rheologically
layered structure. We demonstrated that the modes of instability associated with the waviness of
growth rate curves have much the same growth rate. It means that the induced background flow
may generate a mixture of diapirs with different wavelengths rather than diapirs with one dominant
wavelength associated with a well-defined maximum growth rate. This provides a possible origin for
a non-uniform distribution of mature diapirs.
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Depth-dependent strain rate is one of the factors influencing the formation of layered structures.
A thin-skinned and thick-skinned extension or compression can result in different way of evolution
of salt diapirs [9,20]. Our model of three-layered structure can be applied to analyze the evolution
of salt diapirs overlain by a perfectly plastic overburden and underlain by a non-Newtonian subsalt
layer. The model results show that the growth rate of the instability and the dominant wavelength
can significantly change for large compression of the subsalt layer.

Although real rocks display more complex rheology than a strongly non-Newtonian fluid, we con-
sider our study of particular situations as an essential step in understanding the dynamics of rhe-
ologically stratified natural structures. We conclude, on theoretical grounds, that the rheologically
layered system yields plastically for small values of the ratio between the viscosity of the middle layer
and the effective viscosity of its surroundings.
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