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THE EFFECT OF POWER�LAW RHEOLOGY
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INSTABILITY OF A VISCOUS LAYER
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The gravitational instability of a rheologically strati�ed system is analyzed in a situation when
a buoyant �uid is overlain by a dense perfectly plastic layer and underlain by an in�nitely deep
layer of a non�Newtonian power�law �uid� The system is subject to depth�dependent horizontal
extension or compression� The growth rate of small perturbations versus wavenumber is found in
analytical terms� E�ects of the viscosity and thickness ratios between the two layers are assessed�
The following results are obtained for the case where the viscosity of the buoyant layer is much
less than the e�ective viscosity of surroundings� In contrast to the case of purely viscous layered
system� the dominant wavelength of the most unstable mode decreases with increasing thickness
of the upper layer� The instability pattern is similar to that of perfectly plastic material� The
buckling instability induced by a rapid horizontal straining overwhelms the gravitational instability�
and then the growth rate of perturbations depends linearly on the viscosity ratio� The compression
of the lower layer reduces the growth rate of the perturbations over a range of wavelengths� and
the dominant wavelength becomes longer with increasing compression� The applicability of the
analytical results to the problems of salt tectonics is discussed�
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Introduction

The rheology of sedimentary rocks is quite complex their properties depend on temperature�
composition� pore �uid pressure� and other factors	 Because the e�ective viscosity of the uppermost
brittle sediments is rather high� the deformations of rocks are not controlled by dislocation creep
and are determined instead by motions of sedimentary blocks along pre�existing faults of various
orientations	 The dynamic friction at faults depends only very weakly on the strain rate� and such
a physical mechanism of deformation is most naturally modeled by the rheology of a strongly non�
Newtonian power�law �uid or even perfectly plastic material which does not exhibit work�hardening
but �ows plastically under constant stress ���	
The gravitational and buckling instabilities are crucial in the evolution of geological structures	

The gravitational instability is associated with variations in density due to chemical or thermal het�
erogeneities	 The buckling instability arises from variations of viscosity under the action of an applied
stress	 These two kinds of instability �nally determine whether disturbances will grow or decay in
layered structures	 When rocksalt is buried under clastic deposits in sedimentary basins� the com�
pacting overburden becomes denser in time than the rocksalt	 Salt can then rise through the overlying
sedimentary layer to form diapirs ���	 Studies of natural diapirs have bene�ted from theoretical anal�
yses	 Biot �
�� Biot and Od�e ���� and Ramberg ��� developed a theory of gravitational instability of
layered geological media under compression	 Schmeling ��� demonstrated how the dominant �but not
necessarily characteristic� wavelength and the geometry of the gravity overturns are in�uenced by
the shape of the initial perturbation	 Poliakov et al	 ��� and Naimark et al	 ��� studied numerically
the e�ects of di�erential loading of sediments on diapirism	 In the studies mentioned the layered
geological structures were modeled as systems of viscous layers	
We analyze the gravitational instability of a rheologically strati�ed geological structure under

compression or extension and try to explain some features of salt diapiris observed in the sedimentary
basin� for example� the non�uniform distribution of diapirs and the reduction of interdiapir spacings	
This is in line with recent advances in salt tectonics� which highlight the role of horizontal stretching
or squeezing of a brittle overburden in the formation of salt structures ������	
Several analytical investigations have been performed to �nd the di�erences in growth rates be�

tween the instability of Newtonian and non�Newtonian �uids under �nite�amplitude compression and
extension �������	 However these studies either have not addressed the problem of the instability
due to density inversion or have not evaluated the features of the instability of rheologically strati�ed
material to determine all implications	

�� Equations of motion and boundary conditions

We study the gravitational instability of a three�layered structure �Fig	 �� a perfectly plastic layer
of the e�ective viscosity �� and density �� in � � z � h� overlays a viscous layer of the viscosity ��
and density �� in �h� � z � �� both layers rest on an in�nitely deep layer �lled by a non�Newtonian
power�law �uid of the e�ective viscosity �� and density ��	 Hereinafter subscripts �� �� and 
 refer
to the upper� middle� and lower layers� respectively	 The governing equations are represented by the
equations of momentum� rheology� continuity� and density advection �see e	g	� �����	 Motivated by
the extremely large viscosities of geological �uids� we assume that inertial terms in the Navier�Stokes
equations are negligible and that the motion is governed by the Stokes equations	 In general� the stress

tensor �ij and strain rate tensor ��ij satisfy the non�Newtonian power�law �uid relation �ij � C ��
��n

n ��ij �
where the constant C is de�ned from thermodynamical conditions� n is the power�law exponent� and
�� � � ��kl ��kl�

��� is the second invariant of the strain rate	
The structure is subject to layer�parallel extension �or compression� with horizontal strain rates

���xx � �� �or ���� in the upper layer and ���xx � �� �or ���� in the lower layer� where �� and �� are
constants	 Incompressibility implies that ���zz � � ���xx	 The remaining component of the strain rate
tensor ���xz � � for the background pure shear �ow	
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Fig� �� A sketch of the rheologically layered structure model�
A small sinusoidal perturbation is prescribed to the interfaces of the layers� �� and ��� �� and ��� and �� and ��

are the e�ective viscosity and density of the upper� middle� and lower layers respectively� The layers are subject to
horizontal extension or compression of di�erent magnitudes 0solid and dashed arrows1

In order to obtain the equations governing the small perturbations of physical variables� we neglect
all products and powers of the perturbations and retain only linear terms	 We introduce small
perturbations of pressure ��P �� density ����� components of velocity v �u and w�� stress tensor� ��ij �
and strain�rate tensor �� ��ij�	 The equations take the form

�
��P

�xj
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dz
� �� ���

where i� j � x� z� Fi � ����g�� and �� is the e�ective viscosity de�ned to be �	�C ���
��n

n 	 Equation ���
represents the anisotropic stress�strain rate relationships in the case of the non�Newtonian power�law
rheology �e	g	� �����	
The conditions at the upper boundary z � h� are stress�free and obtained from the absence of

tangential and normal stress

��xz�� � �
xx��
��

�x
� ���

��P� � ��zz�� � ��g� � �� ���

where �
xx�� � �����xx�� � ���� is the component of stress tensor for the basic background �ow �����
and � is the vertical displacement of the upper boundary de�ned by ����t � w�	
At the interfaces between the upper and middle layers �z � �� and the middle and lower layers

�z � �h��� we require continuity of velocity� tangential and normal stress accounting for forces due
to the density and viscosity discontinuities at the interface
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ui � ui��� wi � wi��� ���

��xz�i � ��xz�i�� � ��
xx�i � �
xx�i���
�i
�x

� ���

��Pi � �Pi�� � ��zz�i � ��zz�i�� � ��i�� � �i�gi � �	 ���

where �i��t � wi � wi�� and i � �� �	 Equations ��� and ��� include the driving mechanism for the
background �ow induced by extension or compression� while the last term in ��� and ��� provides the
motion of the layered structure due to density discontinuity	
Analyzing the disturbance into normal modes� we use the Laplace�Fourier transform with the kernel

exp�ikx�pt�� where k is the wavenumber and p is the growth rate of the perturbations	 The stability
problem then reduces to the analysis of variable p as a function of k	 If all p have negative real part
for all k� then the system of layers is stable� the system is unstable if there exist p with a positive
real part for some range of k	 For solutions having this dependence on x and t� ������� become

ik�P � �
���

n
k�u�D����Du� ikw��� ����

D�P � ik����Du� ikw�� � D

�
���

n
Dw

�
� g��� ����

iku �Dw � �� ����

p�� � �wD�� ��
�

where D � d�dz	 We multiply ���� by ik� use ���� and combine ���� and ��
� to obtain

�k��P �
���

n
k�Dw �D����D� � k��w�� ����

D�P � ����D� � k��w� D

�
���

n
Dw

�
�

gD�

p
w	 ����

Eliminating �P between ���� and ����� we obtain

�D� � k������D� � k��w�� �k�D
� ��
n
Dw

�
�

gD�

p
w � �	 ����

We assume the density and viscosity to be constant within each layer	 Then ���� becomes�
�D� � k��� �

�k�

n
D�

�
w � �	 ����

The general solution to ���� is the linear combination

w � A� exp�k��z� � B� exp�k��z� � C� exp�k��z� �D� exp�k�	z�� ����

where A�� B�� C�� and D� are constants and

�j � �

�
�

n
� �� i

���� n�
�

�

n

� �

�

�j � �� �� 
� ��	

In the case of a Newtonian �uid �n � �� ���� becomes

�D� � k���w � � ����

with the general solution

w � A� coshkz �B� sinh kz � C�z cosh kz �D�z sinh kz� ����
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where A�� B�� C�� and D� are constants	
In a case of a perfectly plastic medium �n ��� ���� becomes

�D� � k���w � � ����

with the general solution

w � A� coskz � B� sin kz � C�z coskz �D�z sin kz� ����

where A�� B�� C�� and D� are constants	
Boundary conditions ������� are represented in the form�

D� � k� �
��k�

p

�
w� � �� ��
��
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�
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��g

��p

�
w� � �� ����
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��
�D� � k��w� �
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p
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�� Linear analysis

Equations ���� for the upper layer� ���� for the middle layer� and ���� for the lower layer �n � 
�
with boundary conditions ��
���
�� make the boundary value problem for the eigenvalue p and
eigenfunction w		 The conditions of no �ow as z � �� reduce solution ���� of equation ���� to the
form

w � exp�kaz��A� cos kbz �B� sin kbz�� �
��

a � cos
�

�
� b � sin

�

�
� � � arccos����
�	

Substituting solutions ����� ����� and �
�� into the boundary conditions� we obtain a system of ten
linear algebraic equations for ten constants Ak� Bk � Cl� and Dl �k � �� �� 
� l � �� ��	 Zeros of the
determinant� of this linear system are eigenvalues of the boundary value problem	
We introduce the following dimensionless quantities �i � �� �� 
� j � �� ��

ai � �i���� � ���� ci � �i����� ����

�� � ����� � a��a�� �� � ����� � a��a��

dj � hj��h� � h��� q � k�h� � h��� xj � qdj � khj �

� � pt�� ��j � ��jt�� F �
��� � ���g�h� � h��t�

���� � ���
�

G� � Fc�d��a�� G�� � F�c� � c��d��a�� G�� � F�c�� c��d��a�	

After some manipulation� we deduce that a nontrivial solution to the above linear algebraic equa�
tions exists when

det�pij� � � �
��

where
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p�� � �

�
G��

x�
tan x� � �����

�
� ���

�
G��

x�
�x� � tanx�� � ������ ���x� tanx�

�
�

p�� � ������x� � ��� ���� tanx��� p�� � ��� tanx�� p�	 � ������x� tanx� � ���

p�� � �

�
G��

x�
x� � G� � ������ ���x� tanx�

�

� G�

�
G��

x�
�x� � tanx�� � ������ ���x� tanx�

�
�

p�� � ����G� � ��x� � G� tanx��� p�� � G� tan x��

p�	 � ���G� � ��x� tanx�� p�
 � p�� � p�
 � p�� � ��

p�� � cosh x� � x� sinh x�� p�� � � sinh x� � x� cosh x��

p�� � �x� coshx�� p�	 � x� sinh x�� p�
 � �� p�� � ��

p	� � x� cosh x�� p	� � �x� sinh x�� p	� � cosh x� � x� sinh x��

p		 � ��sinh x� � x� cosh x��� p	
 � a� p	� � �b�

p
� � ���x� sinh x�� p
� � ��x� cosh x��

p
� � ����sinh x� � x� cosh x��� p
	 � ���cosh x� � x� sinh x���

p

 �
�

�
�a� � b� � �� �

�

�
������ � ����� p
� � �ab�

p�� � ����sinh x� � x� cosh x��� p�� � ���cosh x� � x� sinh x���

p�� � ��x� sinh x�� p�	 � ���x� cosh x��
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�
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b� �
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Equation �
�� is a cubic polynomial with respect to the growth rate � associated with the induced
background �ow and a �ow due to density discontinuity	 We do not present here the coe cients of the
polynomial for the lack of space	 We �nd roots of the cubic polynomial from the Cardano formula	
We consider the maximum positive root for �� that is� the least stable root	 It should be noted that
signs of two roots of �
�� may exchange for some values of q� ��� ��� ���� and ���	
To illustrate the results� we take the following values of the model parameters h� � h� � �� km�

�� � �� � �� ��
�� Pa s� �� � �	�� ��

� kg m��� �� � �	�� ��
� kg m��� and �� � �	�� ��

� kg m���
t� � 
� ��

�� s	 These values model rocksalt overlain by a sedimentary overburden and underlain by
a subsalt layer	
First� we analyze the case when the horizontal background strain rates� ��� and ���� are small to

inhibit the development of the buckling instability	 We �nd that ��� � ���� is a reasonable value
of the background strain rate in this case	 For such small values of the strain rate gravity e�ects
dominate in the instability of the layered structure	 When c� � c� and both ��� � ��� and ��� � ����
at least one of the roots of �
�� is positive for all q	 Fig	 � illustrates the curves of the growth rate
versus wavenumber for various values of e�ective viscosity ratio ��	
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te Fig� �� The growth rate versus wavenumber for var�

ious values of the e�ective viscosity ratio� ��2 3 0a1�
4�3 0b1� 34�� 0c1� 34�� 0d1� and 34�� 0e1� at d��d� 5 3�
c� � c� 5 4�46� c� � c� 5 4�3� �� 5 34��� and
7�� 5 7�� 5 34���
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We see that the smaller e�ective viscosity ratio� the higher a positive growth rate and the larger
an amplitude of the curve waviness	 The waviness of growth rate curves is due to the fact that the
perturbation equation for perfectly plastic material is a hyperbolic wave equation and the vertical
velocity structure w�z� is oscillatory	
The dominant wavenumber initially decreases with increasing thickness ratio but then increases

again by a series of abrupt jumps �Fig	 
� left panel�	 This behavior is associated with the waviness
of the growth rate curve and hence is due to the non�Newtonian rheology of the upper and lower
layers	 It occurs when the second� third and so on peaks of the growth rate curve becomes higher
than the surrounding peaks	 The maximum growth rate initially increases with increasing thickness
ratio� however� it decreases steadily for larger thickness ratio �Fig	 
� right panel�	
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Fig� �� The dominant wavenumber 0left panel1 and maximum growth rate 0right panel1 versus the thickness
ratio� d��d�� for various values of the e�ective viscosity ratio� ��2 3 0a1� 4�3 0b1� and 34�� 0c1� at c� � c� 5 4�46�
c� � c� 5 4�3� �� 5 34��� and 7�� 5 7�� 5 34��

Fig	 � illustrates growth rate curves for both horizontal extension �curves a�d� and compression
�curves e�h� of the upper layer while the background strain rate ��� � ���	 It shows the growth rates to
be positive for small values of background strain rate ��� and to become either positive or negative for
larger ���	 The maximum growth rate increases in amplitude with increasing background strain rate
���� while the other sinusoidal peaks of the growth rate curves increase faster and become dominant	
At large background strain rates ����� ��

�
� the model tends to a !resonance! behaviour marked by
sinusoidal growth rate curves and by a linear dependence of the rate on e�ective viscosity ratio ��
�	
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Fig� �� The growth rate versus wavenumber for various values of the basic background strain rate 7���
For extension2 34�� 0a1� 34�� 0b1� 34�� 0c1� 34�� 0d18 for compression2 �34�� 0e1� �34�� 0f1� �34�� 0g1�

�34�� 0h1� all at d��d� 5 3� c� � c� 5 4�46� c� � c� 5 4�3� �� 5 34��� and 7�� 5 34��
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Curves in Fig	 � show how the maximum growth rate depends on horizontal extension or compres�
sion of the lower layer at ��� � ��� and �� � �� � �	�	 At small wavenumbers �or at long wavelengths�
the growth rate is seen to fall down with decreasing strain rate ���	 Large compression of the lower
layer retards the growth of perturbations for wavenumbers less than � and �nally results in a negative
growth rate at some interval of wavenumbers ranged from about � to � and increasing growth rate
for wavenumbers less than about �	 It was also found that changes in ��� have little e�ect on the
growth rate curves for large wavenumbers	 If the e�ective viscosity ratios �� and �� are su ciently
small� much larger compression of the lower layer �than that in the case of �� � �� � �	�� is required
to shift the dominant wavenumber to small values	
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Fig� �� The growth rate versus wavenumber for
various values of the basic background strain
rate� 7��2 34

�� 0a1� 9�34�� 0b1� 34�� 0c1� �34��

0d1� �:� 34�� 0e1� at �� 5 �� 5 4�3� d��d� 5 3�
c� � c� 5 4�46� c� � c� 5 4�3� and 7�� 5 34���
Asterisks show points of sign exchange between
two roots of Eq�0;:1

The results of the analytical study show that when the viscosity of the middle layer is less than
the e�ective viscosity of surroundings� the instability of the structure under compression or extension
is similar to the instability of perfectly plastic material manifested as oscillations of the growth rate
curves and a linear dependence of the growth rates on e�ective viscosity ratio	

Discussion and conclusions

We studied the gravitational instability of a rheologically layered structure under compression or
extension and analyzed the growth rates and dominant wavelengths of the perturbations generated
in the structure	 During a deposition of sediments the thickness of the salt overburden grows with
respect to the initial thickness of the salt layer	 Assuming the sedimentation to be rapid compared
to the timescale of diapirism� the distance between the crests of two neighboring diapirs is de�ned by
the dominant wavelength	 The analytical results show that the dominant wavelength is short when
the overburden is rather thin	 Initially it becomes longer with increasing thickness of the overburden
but then reduces when the thickness of the overburden becomes greater than the thickness of the
salt layer	 Such a reduction of the dominant wavelength can explain the surprisingly small distance
between salt diapirs in some sedimentary basins �for example� in the Great Kavir in Iran� see �����	
The extension of sedimentary layers containing salt results in the thinning of a brittle overburden� its

faulting� and the activation of salt diapirs �e	g	� �����	 We showed that the buckling instability replaces
the gravitational instability for rather rapid horizontal stretching or squeezing of the rheologically
layered structure	 We demonstrated that the modes of instability associated with the waviness of
growth rate curves have much the same growth rate	 It means that the induced background �ow
may generate a mixture of diapirs with di�erent wavelengths rather than diapirs with one dominant
wavelength associated with a well�de�ned maximum growth rate	 This provides a possible origin for
a non�uniform distribution of mature diapirs	
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Depth�dependent strain rate is one of the factors in�uencing the formation of layered structures	
A thin�skinned and thick�skinned extension or compression can result in di�erent way of evolution
of salt diapirs ������	 Our model of three�layered structure can be applied to analyze the evolution
of salt diapirs overlain by a perfectly plastic overburden and underlain by a non�Newtonian subsalt
layer	 The model results show that the growth rate of the instability and the dominant wavelength
can signi�cantly change for large compression of the subsalt layer	
Although real rocks display more complex rheology than a strongly non�Newtonian �uid� we con�

sider our study of particular situations as an essential step in understanding the dynamics of rhe�
ologically strati�ed natural structures	 We conclude� on theoretical grounds� that the rheologically
layered system yields plastically for small values of the ratio between the viscosity of the middle layer
and the e�ective viscosity of its surroundings	
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