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A new non-parametric statistic is introduced for the characterization of deviations of

the distribution of seismic energies from the Gutenberg-Richter law. Based on the two

�rst statistical log-moments, it evaluates quantitatively the deviations of the distribution

of scalar seismic moments from a power-like (Pareto) law. This statistic is close to zero

for the Pareto law with arbitrary power index, and deviates from zero for any non-Pareto

distribution. A version of this statistic for discrete distributions of quanti�ed magnitudes

is also given. A methodology based on this statistics consisting in scanning the lower

threshold for earthquake energies provides an explicit visualization of deviations from the

Pareto law, surpassing in sensitivity the standard Hill estimator or other known techniques.

This new statistical technique has been applied to shallow earthquakes (h � 70 km) both

in subduction zones and in mid-ocean ridge zones (using the Harvard catalog of seismic

moments, 1977{2000), and to several regional catalogs of magnitudes (California, Japan,

Italy, Greece). We discover evidence for log-periodicity and thus for a discrete hierarchy

of scales for low-angle dipping, low-strain subduction zones with a preferred scaling ratio


 = 7 � 1 for seismic moments consistent with previous reports. We propose a possible

mechanism in terms of cascades of fault competitions.
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¬®¬¥­²®¢) 
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¯¥°¨®¤¨·­®±²¨.

Introduction

The famous Gutenberg-Richer (G-R) size-frequency law gives the num-

ber N of earthquakes of magnitude larger than m

W

(in a large given ge-

ographic area over a long time interval) [1]. Translating the magnitude

m

W

= (2=3)(log

10

M

W

� 16:1) in seismic moment M

W

= �UA expressed in

dyne-cm (where � is an average shear elastic coe�cient of the crust, U is

the average slip of the earthquake over a surface A of rupture), the G-R law

gives the number N(M

W

) of earthquake of seismic moment larger thanM

W

.

The striking empirical observation is that N(M

W

) can be modeled with a

very good approximation by a power law

N(M

W

) � 1=(M

W

)

�

: (1a)
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The Gutenberg-Richter law (1a) is found to hold over a large interval of

seismic moments ranging from 10

20

� 10

24

(m

W

= 2:6 � 4) to about 10

26:5

dyne-cm (m

W

= 7). Many works have investigated possible variations of this

law (1a) from one seismic region to another and as a function of magnitude

and time. Two main deviations have been reported and discussed repeatedly

in the literature:

1) from general energy considerations, the power law (1a) has to cross-

over at a \corner" magnitude to a faster decaying law. This would translate

into a downward bend in the linear frequency-magnitude log-log plot of (1a).

The corner magnitude has been estimated to be approximately 7:5 for sub-

duction zones (SZ) and 6.0 for mid-oceam ridge zones (MORZ) [2, 3] but

this is hotly debated (see below);

2) the exponent � is di�erent in SZ and in MORZ [4]. There is in addi-

tion a controversy among seismologists about the homogeneity of �-values

in di�erent zones of the same tectonic type. Some seismologists believe that

�-values are di�erent at least in several zone groups, others �nd these dif-

ferences statistically insigni�cant.

The authors [2, 3, 5{13] proposed, that the large-magnitude branch of the

distribution can be modeled also by a power-like law and that the crossover

moment or magnitude between these two distributions can be connected with

the thickness of the seismogenic zone. Pacheco et al. [8] claimed to have

identi�ed a kink in the distribution of shallow transform fault earthquakes

in MORZ around magnitude 5.9 to 6.0, which corresponds to a character-

istic dimension of about 10 km; a kink for subduction zones is presumed

to occur at a moment magnitude near 7.5, which corresponds to a downdip

dimension of the order of 60 km. However, Sornette et al. [10] have shown

that this claim cannot be defended convincingly because the crossover mag-

nitude between the two regimes is ill-de�ned. Pisarenko and Sornette [4, 14]

suggested new statistical tests to �nd deviations of earthquake energy dis-

tributions from the Gutenberg-Richter law at the extreme range and used

the Generalized Pareto Distribution (GPD) to characterize tails of energy

distributions in this range. In particular, using a transformation of the or-

dered sample of seismic moments into a series with a uniform distribution

under the assumption of no crossover and applying the bootstrap method,

Pisarenko and Sornette [14] estimated a crossover magnitudem

W

= 8:1�0:3

for the 14 subduction zones of the Circum Paci�c Seismic Belt. Such a large

value of the crossover magnitude makes it di�cult to associate it directly

with a seismogenic thickness as proposed by many di�erent authors in the

past. The present paper can be seen as a continuation of the study begun

in [4, 14], but we stress that this continuation is based on a quite di�erent

non-parametric approach, in contrast to the parametric methods previously

developed.
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There is a second important novelty here. Complementary to these pre-

vious works emphasizing deviations from the G-R distribution only in the

tail, the present paper explores the possible existence of deviations from (1a)

elsewhere, that is, in the bulk of the distribution. This becomes possible by

our introduction of a new statistic, which turns out to be very sensitive to

deviations from a pure power law. Namely, we suggest a non-parametric

statistic that is close to zero for \pure" G-R laws, and deviates from zero

at energy sub-ranges with large enough deviations from the G-R law. This

is a �rst attempt to address the problem of characterizing deviations in the

whole range of seismic moment sizes, including moderate and small events,

with the hope of connecting such hypothetical deviations with tectonic and

geological particularities of the zones in question.

Deviations of a pure G-R power law can take a priori many shapes. It

has been recognized with the development of the concept of fractals [15] that

power laws are the hallmark of the symmetry of "continuous scale invariance"

(CSI) ([16] and references therein). Deviations of a pure G-R power law thus

express some degree of breaking of this CSI symmetry. As for any other

symmetry, there are many ways to break the CSI symmetry. One of them is

particularly interesting because it constitutes a minimalist way of breaking

the CSI symmetry: it corresponds to keeping the scale invariance but only

for speci�c scales organized according to a discrete hierarchy with some

�xed preferred scaling ratio 
. The lower symmetry thus obtained is called

\discrete scale invariance" (DSI) ([17] and references therein). Going from

CSI to DSI corresponds to a partial breaking of the CSI, conceptually similar

to the partial breaking of continuous translational invariance in liquids into

discrete translational invariance in solids. In the present paper, our new

statistic unearths a DSI structure decorating the G-R power law, which is

the most apparent for low-strain low-angle dipping subduction zones. This

is particularly interesting because it complements from a novel angle with a

di�erent data set previous reports of DSI in crack growth [18,19], rupture

and fragmentation [20{24]; and seismicity [23{27]. We elaborate on the

implication of this �nding in the discussion section.

The organization of this paper is as follows. In section 1, we describe the

new statistic tailored for studying deviations from the G-R law and summa-

rize its main properties (for continuous variables such as seismic moments).

In section 2, we present a similar technique for catalogs with quantized mag-

nitudes, as they are usually given in seismic catalogs (for instance in 0.1

magnitude units). In section 3, we apply these statistics both to some simu-

lation examples and to the Harvard catalog of seismic moments. In section

4, we apply the discrete version of our statistic to several regional catalogs.

Section 5 presents a discussion of our results and concludes.
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1. TP -statistic and its properties

It is well-known that, in terms of (scalar) seismic moments, the G-R law

coincides with the Pareto distribution F (x), allowing us to rewrite (1a) as

F (x) = 1� (u=x)

�

; x � u; � > 0; (1b)

where u { lower threshold, and � { power index of the distribution. Let

us consider a �nite sample x

1

; : : : ; x

n

. It is desirable to construct a statis-

tic TP = TP (x

1

; : : : ; x

n

) such that, asymptotically for large n, TP would

be close to zero and, at the same time, would deviate from zero for sam-

ples whose distribution deviates from equation (1b). Let us construct such

statistic based on the �rst two normalized statistical log-moments of the

distribution (1). Using the symbol E for the mathematical expectation, we

have

E log(X=u) =

1

Z

u

log(x=u)dF (x) = 1=�; (2)

E log

2

(X=u) =

1

Z

u

log

2

(x=u)dF (x) = 2=�

2

: (3)

Thus, if we choose

TP =

 

1=n

n

X

k=1

log(x

k

=u)

!

2

� (0:5=n)

n

X

k=1

log

2

(x

k

=u); (4)

then according to the Law of Large Numbers and equations (2){(3), the

statistic TP tends to zero as n ! 1. In order to evaluate the standard

deviation std(TP ) of the statistic TP , we rewrite (4) in the form:

TP =

 

1=n

n

X

k=1

[log(x

k

=u)�E

1

] + E

1

!

2

�

�(0:5=n)

n

X

k=1

[log

2

(x

k

=u)�E

2

]� 0:5E

2

; (5)

where E

1

; E

2

are the expectations of log(x

k

=u) and log

2

(x

k

=u) respectively

(for Pareto samples, E

1

= 1=� and E

2

= 2=�

2

). Both sums in equation (5)

are of the order n

�0:5

:

"

1

= 1=n

n

X

k=1

[log(x

k

=u)�E

1

] / n

�0:5

;

"

2

= 1=n

n

X

k=1

[log

2

(x

k

=u)� 2=�

2

] / n

�0:5

:
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Thus, if n is large enough, we can expand TP in equation (5) into Taylor

series up to terms of the order n

�0:5

in the neighborhood of E

1

and E

2

respectively:

TP

�

=

(E

2

1

� 0:5E

2

) + 2E

1

"

1

� 0:5"

2

: (6)

This provides an estimation of std(TP ) by the standard deviation of

the sum:

2E

1

"

1

� 0:5"

2

=(2E

1

=n)

n

X

k=1

[log(x

k

=u)�E

1

]�(0:5=n)

n

X

k=1

[log

2

(x

k

=u)�E

2

] =

= (0:5E

2

� 2E

2

1

) + (1=n)

n

X

k=1

[2E

1

log(x

k

=u)� 0:5 log

2

(x

k

=u)]: (7)

The standard deviation of the last sum in (7) can be estimated by

n

�0:5

std[2E

1

log(x

k

=u)� 0:5 log

2

(x

k

=u)]; (8)

and the standard deviation std of the term in bracket in equation (8) is esti-

mated through its sampled value [2E

1

log(x

k

=u)� 0:5 log

2

(x

k

=u)]. Equation

(8) provides an estimate of std(TP ) if we replace E

1

by its sample analog:

(1=n)

n

X

k=1

log(x

k

=u):

Fig. 1 shows the TP -statistic as a function of the lower threshold u, applied

to a simulated Pareto sample of size n = 5000 with power index � = 2=3

generated with u = 1 as de�ned in equation (1b). Keeping �xed the syn-

thetically generated data, for a given lower threshold u, we select all data

Fig. 1. TP-statistic as a function

of the lower threshold u, applied

to a simulated Pareto sample of

size n = 5000 with power index

� = 2=3, generated with u = 1 as

de�ned in eq.(1).

Increasing u decreases the

number of data values used in the

calculation of the statistic TP,

thus enhancing the 
uctuations

around 0. Two thin lines show

plus and minus one standard de-

viation std estimated as exposed

in the text

Lower threshold u
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values that are larger than u and calculate TP using only these values above

u. Varying u allows in principle to test di�erent part of the distribution. If

the lower threshold u is smaller than 300, the TP -statistic does not deviate

signi�cantly from zero. Beyond this value (for which there are less than 150

data values), random 
uctuations become large as TP is estimated with a

smaller and smaller number of data.

Having in mind the problem of DSI that we shall encounter in our investi-

gations below, we illustrate the application of the TP -statistic to simulated

samples generated by a Pareto-like distribution with log-periodic oscillat-

ing deviations from an exact Pareto law. Namely, the chosen distribution

function is de�ned by:

F (x)=

(

1� C

1

(b;�b)=x

b+�b

; k ��l � log

10

(x) < (k + 1=2) ��l;

1� C

2

(b;�b)=x

b��b

; (k + 1=2) ��l � log

10

(x) < (k + 1) ��l;

(9)

where k = 0; 1; : : : . The theoretical tail of this distribution function with

b = 0:67; �b = 0:2; �l = 0:75 is shown in �g. 2a (�l is the log

10

-period

of the DSI oscillations, as it is seen from equation (9), corresponding to

a preferred scaling ratio 
 = 10

�l

= 5:62); C

1

, and C

2

are normalizing

constants depending on b, �b. With �b = 0:2, the oscillations are hardly

observable on the graph. Fig. 2a shows as well a sample analog of the tail

function constructed from a sample of size n = 5000 generated with the

DF (9).

10-1

10-2

10-3

10-4

100 101 102 103 104 105 x

1-F(x)

a

-1

-0.6

-0.2

0.2

0.6

1

T
P

-s
ta

ti
st

ic

Lower threshold for power-like random value
100 101 102 103 104

b

Fig. 2. Model case of the distribution function (9) with regular log-periodic oscillating

deviations around a pure power law:

a { theoretical distribution tail (solid line) and sample tail (thin line), sample of size

n = 5000; b { TP-statistic as a function of the lower threshold u, applied to the sample of

size n = 5000, plus and minus one standard deviation are shown by thin lines.

The parameters are b = 0:67, �b = 0:2, �l = 0:75 (�l is the log

10

-period of the DSI

oscillations, as it is seen from eq.(9), corresponding to a preferred scaling ratio 10

�l

= 5:62)
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Fig.2b shows the TP -statistic as a function of the lower threshold u applied

to the above sample. We see that the DSI oscillations are very strong and

distinguishable despite some noise disturbances (in particular, at large lower

thresholds u). Note that the maxima and minima of the log-periodic oscil-

lations shown in �g. 2b correspond to the points of changing slopes shown

in �g. 2a: local maxima of �g.2b correspond approximately to the transition

from slope (b + �b) to slope (b � �b), and local minima to the transition

from (b��b) to (b+ �b).

2. TED-statistic for discrete exponential distribution

Many catalogs measure earthquake sizes with discrete magnitudes rather

than with continuous seismic moments. Accordingly, the G-R law is an

exponential distribution when earthquake sizes are expressed in magnitudes.

In this section, we address the problem of constructing a statistic similar to

TP for a quantized exponential distribution. Let us consider the (shifted)

exponential distribution:

F (x) = 1� exp(�(x� u)=d); x � u; (10)

where d is a scale parameter. Let us assume furthermore that the distribution

(10) is quanti�ed with a step � providing discrete probabilities:

p

k

= F (u + k�)� F (u + (k � 1)�) =

= exp(�(k � 1)�=d)� exp(�k�=d); k = 1; 2; : : : : (11)

Suppose further that, in a given catalog of magnitudes, there arem

k

,m

k

� 0,

values within the interval (u+ (k � 1)�; u+ k�), k = 1; 2; : : : ; so that

m

1

+m

2

+ : : :+m

k

+ : : := n; (12)

where n is the total number of observed magnitudes (sample size). We can

consider the sample (m

1

; m

2

; : : :m

k

: : :) as the result of n independent trials

of discrete rv � taking values 1; 2; : : : ; k; : : : with probabilities (11). The �rst

two moments of the rv � are :

M

1

=

1

X

k=1

kp

k

= 1=(1� exp(��=d));

M

2

=

1

X

k=1

k

2

p

k

= (1 + exp(��=d)=(1� exp(��=d))

2

: (13)
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Denoting � = exp(�=d) we get:

M

1

= �=(�� 1); M

2

= �=(1 + �)=(�� 1)

2

: (14)

We derive from the �rst equation in (14):

� = M

1

=(M

1

� 1); (15)

and from the second equation in (14):

� = (M

1

+M

2

)=(M

2

�M

1

): (16)

Replacing the theoretical moments M

1

;M

2

by their sample analogs

M

�

1

=

1

X

k=1

km

k

=n; M

�

2

=

1

X

k=1

k

2

m

k

=n; (17)

in equations (15), (16) we get two di�erent estimates of � whose di�erence

converges to zero in probability as n ! 1. This results from the fact that

M

�

1

;M

�

2

are consistent estimates of M

1

;M

2

for any value of the unknown

scale parameter d. This provides the looked-for TED-statistic:

TED = (M

�

1

+M

�

2

)=(M

�

2

�M

�

1

)�M

�

1

=(M

�

1

� 1): (18)

Our remaining task is to derive a consistent sample estimate of the standard

deviation std(TED) of the statistic TED de�ned by (18). For this purpose,

we use the formulae derived in [28] for the variance of limit normal distri-

butions for sample moments of a multinomial distribution. The variance of

the limit normal distribution of TED can be estimated as follows. Let us

denote by U

1

; U

2

the following statistics:

U

1

= 1=(M

�

1

� 1)

2

+ 2=(M

�

2

�M

�

1

) + 2M

�

1

=(M

�

2

�M

�

1

)

2

; (19)

U

2

= 2M

�

1

=(M

�

2

�M

�

1

)

2

: (20)

Then, the variance of the limit normal distribution of TED can be consis-

tently estimated by the following expression (see for details [28], chapter 6,

section 6a.1):

var(TED)

�

=

1

X

k=1

k

2

(m

k

=n)(U

1

� kU

2

)

2

�

"

1

X

k=1

k(m

k

=n)(U

1

� kU

2

)

#

2

: (21)
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3. Application of TP -statistic to the Harvard catalog

of seismic moments

Let us consider �rst the Harvard catalog of (scalar) seismic moments

for the time period 1977{2000, and for shallow events (h � 70 km). Only

earthquakes with seismic moments larger than 10

24

dyne-cm are considered

to ensure a tolerable completeness and homogeneity. The total number of

earthquakes in all 14 considered subduction zones (SZ) is 4609. A detailed

analysis of the seismic parameters of individual zones is beyond the scope of

our paper. We use this sample mainly for illustration of our approach based

on TP -statistics with a movable lower threshold. More detailed information

on the seismic moment data and seismic parameters of individual zones can

be found in [4, 14].

3.1. TP -statistic of earthquakes in subduction zones (SZ)

The sample tail of SZ events is shown on �g. 3a. Except for the extreme

range, the sample tail function 1� F (x) looks like a straight line in double

log-scale, i.e. the G-R law seems to apply.

At the very extreme end of the range of seismic moments, a \bend down"

can be observed, but there is no strikingly visible deviations from a straight

line in the middle part (the careful reader may however notice the existence

of an oscillation of very small amplitude). Fig. 3b shows the TP -statistic

applied to the subduction sample. Regular oscillations on a noisy back-

ground are now obvious. In addition, the TP -statistic is translated upward

by 0.1{0.2 which is probably the signature of the bend down in the extreme

range. By comparing �g. 3b with �g. 1, it is clear that the TP -statistic with

a moving lower threshold provides a rather sensitive method for detecting

deviations from the G-R law. We can already conclude from this analysis

that the distribution of earthquake moments exhibits signi�cant deviations

from the pure power law, not only in its tail but also, in a major portion of

the scaling region. In a quantitative form, this evidence can be considered

as a new claim. The comparison of the oscillations observed in �g. 3b with

those of the synthetic test in �g. 2b suggests that the deviation of the distri-

bution of seismic moments from the G-R law can be modeled by log-periodic

oscillations, re
ecting a partial breaking of CSI into DSI. For comparison,

we show in �g. 3c the so-called Hill's estimates of the power index � as a

function of the moving lower threshold u (see, e.g. [29], for details on the

Hill's estimators). The oscillations of the power index are hardly observable

on this graph.
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Fig. 3. Log-periodic deviations in the dis-

tribution of seismic moments for subduc-

tion zones (SZ) earthquakes from the Har-

vard catalog for the time period 1977{2000

and shallow events (h � 70 km):

a { the tail of empirical distribution

function of (scalar) seismic moment vales;

b { TP-statistic applied to these data; c {

the Hill's estimates of the power index �

as function of the moving lower threshold

u, applied to the same data. At b and c

�gures plus and minus one standard devi-

ation are shown by thin lines.

Only earthquakes with seismic moments

larger, than 10

24

(dyne-cm) are considered

to ensure completeness and homogeneity;

sample of size n = 4609

3.2. DSI in the TP -statistic of earthquakes in subduction zones

Let us come back to the oscillations observed in �g. 3b for the distri-

bution of event sizes in subduction zones. While they are signi�cant, can

they be related to any geophysical characteristics? We are going to suggest

such a tentative geophysical interpretation if these oscillations are genuine,

acknowledging in the same time that a de�nite conclusion on this subject

needs more detailed study based on a more representative data.

The seismic and stress-strain regimes in active transitional zones are

believed to be determined mainly by the mechanical coupling between the

down going slab and the overriding continental plate. The dip angle is

known as one of the factors a�ecting the mechanical coupling [30]. It seems

reasonable to suggest that the increase in the mechanical coupling promotes

both an increasing seismic activity and a more noticeable log-periodicity.
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To perform a quantitative analysis, we use a pre-existing classi�cation of

subduction zones constructed by Jarrard [30], based on a set of geological

and tectonic characteristics (29 parameters), of which we select the following

main 5 parameters:

{ intermediate dip up to 100 km of depth (in degrees),

{ strain class (in an abstract discrete scale from 1 to 7),

{ convergence rate (in cm/year),

{ mean slab age at trench (in m.y.),

{ maximum moment magnitude M

w

.

Jarrard [30] provided the corresponding 5 parameter values for each of

his 39 subduction zones. To obtain the 5 parameter values for each of our

14 subduction zones, each one often made of several zones considered by

Jarrard, we averaged the corresponding parameter values over all Jarrard's

zones constituting each of our zones. The resulting values of the 5 parameters

for each of our 14 subduction zones are given in table.

Characteristics of subduction zones (selected from Jarrard, 1986)

Intermediate Strain Convergence Maximum

Zone dip angle, class, rate, Slab age, observed

in degrees (I{VII) cm/yr m.y. magnitude M

w

Alaska 18 (L) VI (H) 6.3 (L) 49 (L) 9.1 (H)

Japan 21 (L) VI (H) 9.9 (H) 67 (H) 8.6 (H)

Kuril Isls 28 (L) V (H) 8.7 (H) 119 (H) 8.8 (H)

Kamchatka 25 (L) V (H) 8.8 (H) 90 (H) 9.0 (H)

Mariana 26 (L) IV (L) 7.6 (L) 94 (H) 7.2 (L)

Mexico 60 (H) VI (H) 7.2 (L) 17 (L) 8.4 (L)

S. America 20 (L) VII (H) 10.0 (H) 38 (L) 9.5 (H)

Sandwich Isls 67 (H) I (L) 0.9 (L) 49 (L) 7.0 (L)

New Hebrides 44 (H) I (L) 8.8 (H) 52 (L) 7.9 (L)

Solomon Isls 42 (H) IV (L) 12.0 (H) 50 (L) {

New Guinea 35 (H) I (L) 4.3 (L) 50 (L) {

Taiwan 41 (H) { 4.6 (L) { {

Tonga 29 (L) I (L) 7.5 (L) 117 (H) 8.3 (L)

Sunda 21 (L) V (H) 8.2 (H) 88 (H) (L)

Values classi�ed as \low" marked by (L), classi�ed as \high" marked by (H)

We then consider each of the 5 parameters one by one. For each parameter,

we classify all 14 zones into two groups with approximately equal numbers

of elements in accordance with \relatively high" (H), or \relatively low" (L)

values of the parameter. This provides us with 5 di�erent partitions of 14

zones marked in table I as (L) and (H). We group all earthquakes of the

zones in the \high" (respectively \low") group of a given partition and ap-

ply the TP -statistic to this \high" (respectively \low") group separately.

Fig. 4a shows that the group with \low" dips is characterized by signi�cant

log-periodic oscillations of its TP -statistic, whereas no oscillation can be
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observed in the TP -statistic of the \high" dip group (�g. 4b). Similar dif-

ferences in the TP statistics of the \low" and \high" strain classes are found.

The classi�cation using the three other parameters does not give noticeable

di�erences between the H and L classes. This suggests that the log-periodic

oscillations are associated with low dip and low strain subduction zones in

the middle part of the slab (60{100 km depth). From the measure of the

period in the logarithm of the lower threshold, we infer a preferred scaling

ratio 
 = 7� 1.
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Fig. 4. TP-statistic as a function of the moving lower threshold u for the group of

subduction zones with \low" (a) and with \high" dip angles (b).

Plus and minus one standard deviation are shown by thin lines

The origin for log-periodicity may be due to a mechanism similar to

that found in growing antiplane shear faults [19] according to the following

mechanism. With simple subduction zone plate bending, intraplate outer

rise earthquakes are mostly due to tensional failure at shallow depths. The

location of the plate bending corresponds to the location of stress concentra-

tion constituting the most favorable loci for earthquake nucleation and fault

growth. We visualize a system of faults more or less parallel to the subduc-

tion boundary. As the plate undergoes its subduction, faults compete with

each other to accommodate the growing strain: nearby faults screen each

other. This competition between two neighboring faults imply that one of

them will start to grow faster and be more active while the other one slows

down, being screened by the �rst one. As this process can occur at all scales,

this leads to a cascade of Mullins-Sekerka instability as demonstrated in [19]

by analytical as well as numerical calculations: from an initial homogenous

population of faults, the cascade of growth instabilities creates a discrete

hierarchy of fault lengths with a scaling factor between successive levels of

the hierarchy close to 2. Thus, we can assume that earthquakes reveal these
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discrete hierarchy of faults. As seismic moments are approximately propor-

tional to the cube of the rupture length, this predicts a preferred scaling

factor of 2

3

= 8 for seismic moments. This value is compatible with our

measurement 
 = 7 � 1. We stress that the mechanism of competition be-

tween growing and reactivated faults operates both for normal as well as

for transform faults and is not restricted to antiplane shear faults. Our pro-

posed mechanism rationalizes our �nding that a DSI fault network should be

more apparent for low-strain low-angle dipping subduction: only then can a

large delocalized lateral zone of faulting be created with many sub-parallel

faults interacting and competing. Large dipping angles localize the region

of competing faults to a narrow scale range, preventing the observation of

log-periodicity.

We recall that all these considerations are tentative since the number of

di�erent subduction zones under analysis (14) is too small to draw a de�nite

conclusion.

4. Application of the TED-statistic to catalogs

with discrete magnitudes

Let us now illustrate the application of the TED-statistic introduced in

section 3 to the global NEIC catalog as well as to the regional catalogs of

Japan, California and Italy, all reported with discrete magnitudes (the dis-

crete magnitude bins are in all cases 0:1 of the magnitude unit). The sample

magnitude-frequency curves (MFC) are shown on �g.5a, and corresponding

TED-statistic as a function of the lower threshold u are shown on �g. 5b,c.

On the MFC of the global NEIC catalog (�g. 5a), there is no visible

feature except for a downward bend at the extreme range, starting near

M = 7:5. On the TED-graph (�g. 5b), there is a corresponding increasing

TED-statistic with an acceleration at the extreme range. Thus, the tail of

the sample MFC deviates more and more strongly downward from the G-R

law as one penetrates further in the tail of the distribution. One could say

that this global catalog is \too heavily averaged" to �nd any other signi�cant

characteristic deviation from the G-R in the middle part of the range.

The MFC of the California catalog (�g. 5a) has a slightly convex form in

the range 1 � M � 3 that can be explained by the partial incompleteness

of the catalog in this range. This fact is re
ected by a positive deviation of

the TED-curve in this interval (�g.5b). Above M

�

=

3, the completeness

of the catalog seems satisfactory, and the TED-curve remains near zero till

M

�

=

5, where a smooth increase starts interrupted by two \humps" near

M

�

=

5:9; 6:3 (a \trough" near M

�

=

6:7 does not seem reliable because of

the large std). In the central part of the range 3 � M � 5, deviations from

the G-R law are small.
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Regional catalogs reveal more structures in their TED-graphs. The

sample MFC for Japan (�g. 5a) is visibly a convex function with a small

downward bend at the extreme range. On its corresponding TED-curve

(�g. 5c), besides the extreme upward bend, one sees two small \troughs"

near M

�

=

5:75 and M

�

=

6:9. The nature of these troughs is unclear. In

the small and intermediate range 3 � M � 5:75, the TED-curve is almost

horizontal (a small negative shift is probably due to the �nal downward bend

of the MFC). It thus seems that the G-R law for Japan in the middle part

of range is ful�lled satisfactorily.

The MFC of Italy (�g. 5a) exhibits some deviations caused by the prac-

tice of a human operator to prefer magnitude values that are multiples of

0.5. Small local minima corresponding to such magnitude values are hardly
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Fig. 5. Empirical tail distributions of

earthquake magnitudes (a) and TED-

statistic as a function of the lower

threshold M value (b and c):

1 { global NEIC catalog, 1973{2003,

M � 5:0, n = 47155; 2 { California,

SCSN catalog, 1975{2001, M � 1:0,

n = 335641; 3 { Japan, 1956{1994,

M � 3:0, n = 57047; 4 { Italy, 1956{

1997, M � 2:5, n = 18502; all reported

with discrete magnitudes �M = 0:1.

At b and c �gures plus and minus one

standard deviation are shown by thin

lines and magnitude-M scales for dif-

ferent catalogues are displaced to make

�gures more clear
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detectable in the MFC, but they are clearly observed in the TED-curve

(�g. 5c), sometimes with small shifts. Indeed, one can discern small but

quite de�nite minima near M

�

=

3; 3:5; 4:1; 4:6; 5; : : : . A \hump" near M

�

=

5:7� 5:8 is seen, but it cannot be ascertain due to the large std.

Thus, unlike the Harvard catalog of seismic moments, we did not �nd no-

ticeable oscillations in magnitude catalogs. The four local catalogs (Japan,

California and Italy) are characterized by very complex boundaries and we

would not expect the simple mechanism of competing faults to be as clearly

apparent due to the probable e�ect of averaging over di�erent fault orien-

tation and fault mechanism: indeed, previous studies have shown that log-

periodicity can only reveal DSI if adequate steps to prevent the destruction

of the oscillations by averaging are taken [23]. The situation is not improved

by the use of discrete magnitudes as it is well known that techniques of mea-

suring earthquake size by magnitude is less accurate as compared with the

method of seismic moments. Di�erent magnitudes are based on measure-

ments of maximum amplitudes on seismograms registered by seismometers

with di�erent frequency ranges. Besides, many magnitude catalogs have

had a long evolution of measurement procedures, thus causing some non-

stationarity in the registered time-series of observed magnitudes. Quantify-

ing magnitudes with step 0:1 can lead to inaccuracies for the determination

of earthquake energies, but probably with not too serious consequences (ex-

cept for the measurement of log-periodicity). Of course, larger steps, say

of 0.25, are able to cause appreciable undesirable e�ects. To check this, we

have converted the Harvard seismic moments (for all 14 subduction zones,

n = 4609) into discrete magnitudes in units of 0.1 and have applied to them

our TED-statistic (see �g. 6). We obtain very weak maxima which, while

corresponding to the strong maxima described above for the continuous

Fig. 6. TED-statistic applied

to the Harvard seismic moments

(for all 14 subduction zones, n =

4609), converted into discrete

magnitudes M

W

in units of 0.1.

Plus and minus one standard

deviation are shown by thin

lines
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TP -statistic, are barely statistically signi�cant with the TED-statistic. We

observe the same phenomenon with synthetic log-periodic power laws of

seismic moments, when transformed into discrete magnitudes. Thus, the

quantization of magnitudes decreases strongly the e�ciency of the detection

of log-periodic oscillations. Thus, for detailed statistical analysis of devia-

tions from the G-R law, the Harvard catalog of seismic moments is preferable

to the magnitude catalogs, despite the fact that magnitude catalogs cover

longer time intervals.

Thus, we can conclude once more that the catalog of seismic moments

is preferable for detailed statistical treatments as compared with magnitude

catalogs.

5. Discussion and conclusions

We have suggested a T -statistic of a new type measuring quantitatively

the deviations from the G-R law expressed both as a function of seismic

moments and as a function of discrete magnitudes. This statistic can be

displayed as a function of a lower threshold. In this respect, it is similar to

the well known mean excess function e(u), see, e.g. [29]:

e(u) = E(X � ujX > u): (22)

This function was introduced as a useful statistical tool to characterize tails

of distributions. For power-like tails, it behaves as a straight line with posi-

tive slope; for exponential tails, it is a constant, and so on. Our statistic (for

continuous distributions) is based on two mean log-excess moments l

1

(u),

l

2

(u):

l

1

(u) = E(log(X=u)jX > u);

l

2

(u) = E(log

2

(X=u)jX > u): (23)

For discrete magnitudes with exponential distribution (the G-R law), in

addition to (22), the second mean excess moment e

2

(u) in discrete form was

used:

e

2

(u) = E((X � u)

2

jX > u): (24)

These T -statistic based on statistical moments are not local characteris-

tics of corresponding densities, they are characteristics of a cumulative type,

referring to the tail on the interval (u;1). Thus, they do not answer to

question \at what location a particular sample di�ers from the G-R law?",

but rather to \what part of the extreme tail di�ers from the G-R law?".
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We gave examples of the application of the T -statistics to several previously

well-studied earthquake catalogs. Because of its cumulative property, the

T -statistic is, generally speaking, more stable than local characteristics of

deviations from a given law. The T -statistic permits to judge on the de-

viation of an integral tail portion from the G-R law, but it is not tailored

specially to work with the limit extreme behavior of the tail. For the latter,

we had suggested other methods in [4, 14] and we hope to continue working

in this direction elsewhere.

It should be noted that for the Pareto (or, for the exponential) distri-

bution there exist a lot of non-trivial statistics, whose distribution is free of

the form parameter �, and that can be used for checking deviations from

this law. One could, e.g., take other combinations of sample log-moments,

or simple moments, than the combination used in equation (4). As it was

pointed out by G.Molchan in [31], these authors tested the exponential hy-

pothesis H

0

for the distribution of earthquake magnitudes (the ideal G-R

law) versus a particular alternative hypothesis H

1

, namely, the distribution

with a quadratic polynomial in the exponent. They used as statistic the fol-

lowing ratio (we use notations of the present paper that di�er from notations

in the cited paper):

TM = n

n

X

k=1

log

2

(x

k

=u)=

�

n

X

k=1

log(x

k

=u)

�

2

: (25)

There is a simple relation between TM and TP :

TM � 1 = 2TP=

�

1=n

n

X

k=1

log

2

(x

k

=u)

�

: (26)

The sum in equation (26) in accordance with the law of Large Numbers

converges to its corresponding theoretical log-moment, thus, both TM � 1

and TP are close to zero under hypothesis H

0

and deviate from zero if H

0

is not valid. In order to compare their e�ciency, we have calculated the

TM - and TP -statistics normalized to their std for the subduction sample

(�g. 7). We see that both normalized statistics show the same peaks, the TP -

statistic being somewhat more e�cient. It should be noted that the use of the

TM -statistic in the paper [31] assumed exact magnitude values which was

not quite correct since at that time the Harward catalog still did not exist,

and only catalogs with discretized magnitudes were in use, which strictly

speaking did not allow using the TM -statistic. For discretized magnitudes,

one is forced to use statistics of the TED type.



156 �¥©±¬¨·­®±²¼, ¯°®£­®§ ¨ ¬®¤¥«¨

Lower threshold for seismic moment u (dyne-cm)

0

2

4

6

N
o

rm
al

iz
ed

T
P

-
an

d
(T

M
-1

)-
st

at
is

ti
cs

1024 1025 1026 1027 1028

Fig. 7. TP-statistic (solid line)

and (TM -1)-statistics (thin line)

normalized to their std; the sub-

duction sample n = 4609

Application of the TP -statistic to subduction zones (the Harvard catalog

of seismic moments) permitted to discover some heterogeneities in the seismic

moment-frequency curve. They are exhibited more explicitly for subduction

zones with low dip angle and with low stress. We cannot say de�nitely

what is the nature of these heterogeneities which appear as oscillations of

the TP -statistic in the logarithm of the lower threshold. We can't say that

we are absolutely free from some doubts that these discovered oscillations

are artifact due to some peculiarities of the algorithms used in the data

processing of the Harvard catalog. We can't �nd neither any de�nite reason

for considering our discovered oscillations as an artifact. So, with these

reservations, we shall consider them as a natural e�ect. As an explanation

of these log-periodic oscillations, we can accept that they are the signature

of a discrete scale invariance (DSI) in the seismic catalogs. We suggested

a simple mechanism in terms of competing faults localized in the domain

where the bending of the subducting plate is concentrated.

More generally, if one agrees that the observed log-periodicity is not

an artifact and has a natural cause, we would like to emphasize that log-

periodicity is an inherent property of systems with discrete self-similarity,

see [17, 21, 25, 32]. Thus, we can argue that some physical �eld(s) with

discrete self-similarity underlies these oscillation e�ects. These ideas are

close to those suggested by M.Sadovskii in explaining numerous examples of

\preferable sizes" in nature: geological blocks, ground particles, dimensions

of rock pieces produced by explosions, celestial bodies etc., see [20]. In all

these examples, one observes some \humps" of preferred sizes on a smooth

background of the distributions. According to Sadovskii, the mean log-

distance between two neighboring humps (for linear dimensions of objects,

or reduced to linear dimensions) varies from log

10

2 = 0:3 to log

10

4:5 = 0:65
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with average value log

10

3

�

=

0:5. If we take our \humps" on the TP -curves

for subduction zones and transform their values into linear dimensions (as-

suming that earthquake energy is proportional to the cubic linear dimension

of the source), we get a log-distance about 0:33 (preferred scaling ratio close

to 2 for length scales) which falls into the interval indicated by Sadovskii.

Catalogs with discrete magnitudes (quanti�ed with 0.1 of magnitude

units) did not show noticeable oscillations in the TED-statistic. A possible

reason lies in less precise measurements of earthquake sizes by magnitudes

as compared with seismic moments, and in the non-stationarity of catalog

time-series. Thus, in our opinion, for detailed statistical analysis of the type

performed here, the Harvard catalog of seismic moments is preferable. On

the whole, the agreement of regional catalogs of large sizes, say, 10

4

or more,

with the G-R law is satisfactory in all ranges, except at the extreme end

which needs a special study.

We leave for the future the use of our T -statistic for studies of seismic

zonal particularities. This can only be performed under the condition that

the corresponding zonal catalog is su�ciently large (perhaps, no less than 10

3

events, depending on the range in question). For zonal catalogs, deviations

from the G-R low (if one believes in the zonal validity of the G-R law,

and majority of seismologists do believe in such validity) can be connected

with tectonic and geological particularities of the zone in question (see for

instance [33], which is impossible for global catalogs, or catalogs including

several tectonically di�erent areas.

We are grateful to A.Lander for useful discussion and for help in preparing

the earthquake catalogs, and to G. Molchan for valuable remarks.

This work was supported by the Russian Fondation of Basic Research,

grant 02-05-64379 (Pisarenko, Rodkin). This work is partially supported by

NSF-EAR02-30429, by the Southern California Earthquake Center (SCEC)

and by the James S. Mc Donnell Foundation 21st century scientist award/

studying complex system. SCEC is funded by NSF Cooperative Agreement

EAR-0106924 and USGS Cooperative Agreement 02HQAG0008. The SCEC

contribution number for this paper is 751.

REFERENCES

1. Gutenberg B., Richter C.F. Seismicity of the Earth and associated phenomena.

Princeton Univ. Press: Princeton N.Y., 1954. 310 p.

2. Pacheco J.F., Sykes L. Seismic moment catalog of large, shallow earthquakes, 1900-

1989 // Bull. Seismol. Soc. Amer. 1992. Vol.82. P.1306{1349.

3. Okal E.A., Romanowicz B.A. On the variation of b-values with earthquake size //

Phys. Earth Planet. Inter. 1994. Vol.87. P.55{76.



158 �¥©±¬¨·­®±²¼, ¯°®£­®§ ¨ ¬®¤¥«¨

4. Pisarenko V.F., Sornette D. Characterization of the frequency of extreme events by

the generalized Pareto distribution // PAGEOPH. 2003. Vol.160, N 12. P.2343{

2364.

5. Main I., Burton P.W. Information theory and the earthquakes frequency-magnitude

distribution // Bull. Seismol. Soc. Amer. 1984. Vol.74. P.1409{1426.

6. Rundle J. B. Derivation of the complete Gutenberg-Richter magnitude-frequency

relation using the principle of scale invariance // J. Geophys. Res. 1989. Vol.94.

P.12,337{12,342.

7. Romanowicz B. A reappraisal of large earthquake scaling { Comment // Bull. Seis-

mol. Soc. Amer. 1994. Vol.84. P.1765{1776.

8. Pacheco J.R., Scholz C.H., Sykes L.R. Changes in frequency-size relationship from

small to large earthquakes // Nature. 1992. Vol.335. P.71{73.

9. Romanowicz B., Rundle J.B. On scaling relations for large earthquakes // Bull.

Seismol. Soc. Amer. 1993. Vol.83. P.1294{1297.

10. Sornette D., Knopo� L., Kagan Y.Y., Vanneste C. Rank-ordering statistics of ex-

treme events: application to the distribution of large earthquakes // J. Geophys.

Res. 1996. Vol.101. P.13883{13893.

11. Kagan Y.Y. Seismic moment-frequency relation for shallow earthquakes: regional

comparison // J. Geophys. Res. 1997. Vol.102. P.2835{2852.

12. Kagan Y.Y. Universality of seismic moment-frequency relation // PAGEOPH.

Vol.155. P.537{573.

13. Sornette D., Sornette A. General theory of the modi�ed Gutenberg-Richter law for

large seismic moments // Bull. Seismol. Soc. Amer. 1999. Vol.89. P.1121{1130.

14. Pisarenko V.F., Sornette D. Statistical detection and characterization of a deviation

from the Gutenberg-Richter distribution above magnitude 8. In press in PAGEOPH

(preprint at http://arXiv.org/abs/cond-mat/0201552). 2004.

15. Mandelbrot B.B. The fractal geometry of nature. San Francisco: W.H. Freeman,

1982. 452 p.

16. Dubrulle B., Graner F., Sornette D. (eds.). Scale invariance and beyond. Berlin:

EDP Sciences and Springer, 1997. P.286.

17. Sornette D. Discrete scale invariance and complex dimensions // Phys. Reports.

1998. Vol.297. P.239{270.

18. Ouillon G., Sornette D., Genter A., Castaing C. The imaginary part of rock jointing

// J. Phys. I France. 1996. Vol.6, N 8. P.1127{1139.

19. Huang Y., Ouillon G., Saleur H., Sornette D. Spontaneous generation of discrete

scale invariance in growth models // Phys. Review E. 1997. Vol.55. P.6433{6447.

20. Sadovskii M.A. Geophysics and physics of explosion (selected works). Moscow:

Nauka, 1999. 335 p. (in Russian).

21. Geilikman M.B., Pisarenko V.F. About the selfsimilarity in geophysical phenomena

// Discrete Properties of Geophysical Media, M.: Nauka (Ed. M.Sadovskii), P.109{

130 (in Russian).

22. Sahimi S., Arbabi S. Scaling laws for fracture of heterogeneous materials and rock

// Phys. Rev. Lett. 1996. Vol.77. P.3689{3692.

23. Johansen A., Sornette D. Evidence of discrete scale invariance by canonical averag-

ing // Inter. J. Mod. Phys. C. 1998. Vol.9, N 3. P.433{447.

24. Suteanu C., Zugravescu D., Munteanu F. Fractal approach of structuring by frag-

mentation // PAGEOPH. 2000. Vol.157, N 4. P.539{557.

25. Sornette D., Sammis C.G. Complex critical exponents from renormalization group

theory of earthquakes: implication for earthquake predictions // J.Phys. I France.

1995. Vol.5. P.607{619.

26. NewmanW.I., Turcotte D.L., Gabrielov A.M. Log-periodic behavior of a hierarchical

failure model with applications to precursory seismic activation // Phys. Rev. E.

1995. Vol.52. P.4827{4835.



�.�.�¨± °¥­ª® ¨ ¤°. �®¢»© ¯®¤µ®¤ ª ¢»¤¥«¥­¨¾ ®²ª«®­¥­¨© 159

27. Saleur H., Sammis C.G., Sornette D. Discrete scale invariance, complex fractal

dimensions and log-periodic corrections in earthquakes // J. Geophys. Res. 1996.

Vol.101 P.17661{17677.

28. Rao C.R. Linear statistical inference and its applications. N-Y: John Wiley, 1973.

625 p.

29. Embrechts P., Kluppelberg C.P., Mikosh T. Modelling extremal events. Berlin:

Springer-Verlag, 1997. 645 p.

30. Jarrard R.D. Relations among subduction parameters // Rev. of Geophys. 1986.

Vol.24. P.217{284.

31. �®«· ­ �.�., �®¤£ ¥¶ª ¿ �.�. � ° ¬¥²°» £«®¡ «¼­®© ±¥©±¬¨·­®±²¨ // �»-

·¨±«¨²¥«¼­»¥ ¨ ±² ²¨±²¨·¥±ª¨¥ ¬¥²®¤» ¨­²¥°¯°¥² ¶¨¨ ±¥©±¬¨·¥±ª¨µ ¤ ­­»µ.

�.: � ³ª , 1973. �.44{66. (�»·¨±«. ±¥©±¬®«®£¨¿; �»¯.6).

32. Sornette D. Critical phenomena in natural sciences: chaos, fractals, selforganization

and disorder: concepts and tools. Berlin: Springer, 2000. 434 p.

33. Bird P., Kagan Y.Y, Jackson D.D Plate tectonics and earthquake potential of

spreading ridges and oceanic transform faults // Plate boundary zones / Stein S.,

Freymueller J.T (eds.). Geodynamics Series. 2002. Vol.30. P.203{218.


